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Covariance of the Exterior Derivative

Christian Lessig∗

The covariance of the exterior derivative is one of the central tenets of exterior
calculus. The following note details how this requires the anti-symmetry of the
covariant tensors involved.1

Setup. Let ϕ : V → V be a coordinate transformation of the linear space V
with dim(V ) = n < ∞, i.e. ϕ is at least C1 and has a C1 inverse (when ϕ is
the transition map between charts then the argument generalizes to manifolds).
We will typically write y = ϕ(x). The tangent map Tϕ is in coordinates given
by

Jj
i (x) =

∂ϕj(x)

∂xi
=
∂yj(x)

∂xi
(1)

and it provides the push-forward for vectors. For co-vectors the push-forward
is in coordinates given by

J̄ i
j(y(x)) =

∂(ϕ−1)i(y(x))

∂yj
=
∂xi(y(x))

∂yj
, (2)

i.e. by the Jacobian of the inverse ϕ−1, which, by the inverse function theorem,
equals the inverse of Jj

i (x).

The exterior derivative for functions. For functions, the exterior deriva-
tive, or co-differential, is defined as

df =
∂f

∂x1
dx1 + · · ·+ ∂f

∂xn
dxn. (3)

It arises naturally when one considers the infinitesimal transport of f along a
flow ηt generated by a vector field X,

d

dt

(
η∗−tf

)
(y) =

d

dt
f(η−t(y)) =

∂f

∂t
+
∂f

∂xi
∂xi

∂t︸︷︷︸
−Xi

(4)
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1The argument is based on those by Mukhi and Mukunda [MM10, p.58].
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where we used that the inverse flow η−t = (η−1)t is generated by the “inverse”
vector field −X. For Eq. 4 to be covariant, the pairing between the vector
components −Xi and the ∂f/∂xi has to be coordinate independent, which
holds exactly when the ∂f/∂xi are the components of the co-vector in Eq. 3.

For Eq. 3, covariance should also hold in the sense that d ◦ ϕ = ϕ ◦
d, i.e. exterior derivative and coordinate transformations commute so that
first computing the exterior derivative and then performing the coordinate
transformation yields the same result as first changing coordinates and then
applying d. For functions, the coordinate transformation is given by

f̄(y) = f
(
ϕ−1(y)

)
= (ϕ−1)∗f. (5)

For the pairing (df)(X) = to be covariant for some vector field X ∈ X(V ), we
have to have

∂f(x)

∂xi
Xi(x) =

∂f̄(y)

∂yi
X̄i(y) (6)

where X̄i denotes the coordinates of X in the new coordinate system. By Eq. 1,
these are given by

X̄i(y) = J i
j(x)Xj(x). (7)

For the right hand side of Eq. 6 we thus have

∂f̄(y)

∂yi
X̄i(y) =

∂f
(
ϕ−1(y)

)
∂yi

Jj
i (x)Xj(x) (8)

which equals the left hand side of the equation only if the Jacobian Jj
i (x) is

cancelled. But writing

∂f
(
ϕ−1(y)

)
∂yi

=
∂

∂yi
f
(
ϕ−1(y) (9)

and using that x = ϕ−1(y) and Eq. 2 we have

∂

∂yi
f
(
ϕ−1(y)

)
=
∂f(x)

∂xn
J̄n
i (ϕ(x)) =

(
J̄n
i (ϕ(x))

∂

∂xn

)
f(x). (10)

Covariance thus indeed holds. The last equation can furthermore be interpreted
in that ∂/∂xn transforms like a co-vector, i.e.

∂

∂yi
= J̄n

i (ϕ(x))
∂

∂xn
. (11)

The exterior derivative for co-vectors. Let α ∈ X∗(V ) be a co-vector
field. We are interested in the exterior derivative

dα ∈ T 0
2 (V ) (12)
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that is yet to be defined. By linearity (as any derivation, i.e. derivative-like
operator, d has to be linear), d acts on the coordinate functions αi(x) and then
it has to match the exterior derivative for functions. This yields

∂α1(x)

∂x1
dx1 ⊗ dx1 + · · · ∂α1(x)

∂xn
dx1 ⊗ dxn +

∂α2(x)

∂x1
dx2 ⊗ dx1 + · · · (13)

For our argument it suffices to consider an arbitrary term from the above
expression. Evidently, for the exterior derivative to be well defined it has to be
irrelevant in which coordinate frame it is computed. Thus

dα(X,Y ) (14)

for two arbitrary vector fields X and Y has to be the same if computed before
or after applying the coordinate transformation ϕ, analogous to what we saw
before for the exterior derivative of functions. We note that by Eq. 1 the
coordinate transformations for X and Y are given by

X̄i = J i
aX

a Y j = Jj
cY

c (15)

Analogous to Eq. 8, the two Jacobians above hence have to be cancelled by the
transformation law for dα for covariance to hold.

Let ᾱi denote the coordinates of α after the coordinate transformation.
Then we have for the derivative of the i-th term of ᾱ with respect to yj that

∂

∂yj
ᾱi =

(
J̄n
j (y(x))

∂

∂xn

)(
J̄k
i (y(x)) ᾱk

)
(16)

where, by Eq. 11, ∂/∂xn on the right transform likes a co-vector.
The derivative ∂/∂xn acts on the product J̄k

i (y(x)) ᾱk. By the Leibniz rule
we hence have

∂

∂yj
ᾱi = J̄n

j (y(x))J̄k
i (y(x))

∂αk

∂xn
+ J̄n

j (y(x))
( ∂

∂xn
∂xk(y(x))

∂yi

)
αk (17)

where we used the definition of J̄k
i (y(x)). Computing the derivative in the

second term by using the chain to resolve the x dependency in ∂xi(y(x))/∂yk

we obtain

∂

∂yj
ᾱi = J̄n

j (y(x))J̄k
i (y(x))

∂αk

∂xn
+ J̄n

j (y(x))
(∂xk(y(x))

∂yi∂ym
∂ym

∂xn

)
αk (18)

which equals

∂

∂yj
ᾱi = J̄n

j (y(x))J̄k
i (y(x))

∂αk

∂xn
+ J̄n

j (y(x))
∂xk(y(x))

∂yi∂ym
Jm
n (x)αk. (19)

Since J̄n
j (y(x)) and Jm

n (x) are Jacobians for ϕ and its inverse ϕ−1, also the
Jacobians are the inverses of each other, i.e.

J̄n
j (y(x)) Jm

n (x) = δmj . (20)
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Thus we have

∂

∂yj
ᾱi = J̄n

j (y(x))J̄k
i (y(x))

∂αk

∂xn
+
∂xk(y(x))

∂yi∂yj
αk. (21)

Considering now the pairing with X̄i = J i
aX

a and Y j = Jj
cY

c we see that for
the first term the Jacobians are indeed cancelled but this is not true for the
second term. In other words, the second term does not transform like a tensor
and the result of the pairing dα(X,Y ) is not covariant.

To obtain a physically (i.e. for applications) relevant exterior derivative,
we have to ”remove” the second term that breaks covariance. Considering the
term, we see that it contains the second derivative (Hessian) of the coordinate
transformation, which is symmetric in i and j. We can hence eliminate it by
using only the anti-symmetric part of Eq. 13. Considering again the derivative
of the i-th term of ᾱ with respect to yj , the anti-symmetric part is given by
(recall that for a matrix A the anti-symmetric part is A−AT )

∂

∂yj
ᾱi −

∂

∂yi
ᾱj =

(
J̄n
j (y(x))J̄k

i (y(x))
∂αk

∂xn
+
∂xk(y(x))

∂yi∂yj
αk

)

−

(
J̄n
i (y(x))J̄k

j (y(x))
∂αk

∂xn
+
∂xk(y(x))

∂yj∂yi
αk

)
.

(22)

Hence

∂

∂yj
ᾱi −

∂

∂yi
ᾱj = J̄n

j (y(x))J̄k
i (y(x))

∂αk

∂xn
− J̄n

i (y(x))J̄k
j (y(x))

∂αk

∂xn
(23)

which is now indeed covariant. Thus, the exterior derivative d : T 0
1 (V )→ T 0

2 (V )
is well defined on covariant tensors when these are anti-symmetric, i.e. on these
the derivative is covariant. Such tensors hence play a distinguished role in the
description of “physical” systems (albeit often in disguise) and are known as
differential forms.
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