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Abstract We present the geometry and symmetries of radiative transfer theory.
Our geometrization exploits recent work in the literature that enables to obtain
the Hamiltonian formulation of radiative transfer as the semiclassical limit of a
phase space representation of electromagnetic theory. Cosphere bundle reduction
yields the traditional description over the space of positions and directions, and
geometrical optics arises as a limit case when the amount of energy that is transported
is disregarded. It is also shown that, in idealized environments, radiative transfer is
a Lie-Poisson system with the group of canonical transformations as configuration
space and symmetry group.

1 Introduction

Radiative transfer describes the transport of electromagnetic energy in macroscopic
environments, classically when polarization effects are neglected [37]. The theory
originates in work by Bouguer [6, 7] and Lambert [22] in the 18th century where
light intensity and its measurement were first studied systematically, cf. Fig. 1. In
the 19th and early 20th century the theory was then extended to include transport
and scattering effects [26, 9, 42, 43]. To this day, however, radiative transfer is a
phenomenological theory with a mathematical formulation that still employs the
concepts introduced by Lambert in the 18th century—and this despite the importance
of the theory in a multitude of fields, such as medical imaging, remote sensing,
computer graphics, atmospheric science, climate modelling, and astrophysics.
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Fig. 1: Early research in radiometry as illustrated by Rubens (from [22]).

In the following, we will explain the physical foundations of radiative transfer in
media with varying refractive index and we study the geometry of the theory and its
symmetries; an overview is provided in Fig. 2. Following recent advances in applied
mathematics, semi-classical analysis is employed to lift classical electromagnetic
theory from configuration space Q ⊆ R3 to phase space T ∗Q. By restricting the
dynamics on T ∗Q to a non-zero energy level and considering the short wavelength
limit one obtains a transport equation for polarized light, and further only considering
the energy that is transported and neglecting polarization leads to radiative transfer
theory in a Hamiltonian formulation. Our derivation shows that the central quantity
of radiative transfer theory is the phase space light energy density ` ∈Den(T ∗Q) and
that radiance, which plays this role in the classical formulation, is meaningful only in
the context of measurements, the setting Lambert considered when he introduced the
concept [22]. With the Hamiltonian formulation of radiative transfer on 6-dimensional
phase space T ∗Q∼=R3×U , the classical 5-dimensional description over the space of
positions and directions is obtained when the conservation of frequency is exploited.
The associated symmetry enables the reduction of the dynamics from the cotangent
bundle T ∗Q to the cosphere bundle S∗Q= (T ∗Q\{0})/R+ and time evolution is then
described by contact dynamics. Fermat’s principle, the Lagrangian formulation of
geometrical optics, is obtained from the Hamiltonian formulation of radiative transfer
through a non-canonical Legendre transform when energy transport is neglected.
From our point of view, geometric optics is thus a special case of radiative transfer
theory. When radiative transfer is considered from a global perspective with the
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Fig. 2: Overview of the physical foundations and the geometric structure of radiative transfer theory.
Semi-classical analysis yields a description of Maxwell’s equations on phase space T ∗Q where the
electromagnetic field F = (E,H)T is represented by the Wigner transform W ε and dynamics are
governed by a matrix-valued analogue of the Moyal bracket {{ ,}}MB. When the short wavelength
limit is considered, this leads to a transport equation for polarized light with the 2×2 matrix density
W 0

a being formed by the classical Stokes parameters. When polarization is also neglected, W 0
a

becomes the scalar light energy density `∈Den(T ∗Q) whose dynamics are governed by the Poisson
bracket. The classical five dimensional formulation of radiative transfer is obtained using cosphere
bundle reduction with the light frequency being the associated conserved quantity. When radiative
transfer is considered globally and the light energy density `t at time t forms a configuration of the
system, radiative transfer becomes a Lie-Poisson system for the group Diffcan(T ∗Q) of canonical
transformations.

light energy density `t ∈ Den(T ∗Q) at time t as a configuration of the system, the
configuration space of the theory becomes the group Diffcan(T ∗Q) of canonical
transformation. Radiative transfer has then a Lie-Poisson structure and the associated
symmetry is the conservation of light energy density along trajectories in phase space.
This provides a modern rationale for the classical law of “conservation of radiance
along a ray” [36]. It also reveals a surprising similarity to Kelvin’s circulation theorem
in ideal fluid dynamics.

2 A Modern Formulation of Radiative Transfer Theory

Following recent work in the literature, in this section we will describe how the Hamil-
tonian formulation of radiative transfer arises as the asymptotic limit of Maxwell’s
equations and we will also study the geometry and symmetries of the system.
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2.1 Derivation

From the scale hierarchy of electromagnetic radiation in physics it is apparent that
radiative transfer has to arise at the short wavelength limit of Maxwell’s equations,
Hamilton’s equations for electromagnetic field theory [30, p. 24]. Nonetheless, the
exact correspondence was open for more than 200 years and still in the 1990s Mandel
and Wolf [27] lamented that “in spite of the extensive use of the theory of radiative
energy transfer, no satisfactory derivation of its basic equation from electromagnetic
theory has been obtained up to now”.1 Recent work in applied mathematics [48, 47,
15, 16, 41] fills this gap and in the following we will summarize a rigorous derivation
of radiative transfer theory from Maxwell’s equations.

In a source free region Q⊂ R3, Maxwell’s equations are given by [5]

∂
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H

)
=
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0 − 1
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)(
E
H

)
(1a)

div(E) = 0 div(H) = 0 (1b)

where ε : Q→ R and µ : Q→ R are the electric permittivity and magnetic perme-
ability, respectively, and E and H represent the electric and magnetic fields; in the
following it will be understood that these fields are divergence free. By introducing
F = (E,H)T , Eq. 1 can be written as

Ḟ = MF (2)

and we will denote M as the Maxwell operator.2 The classical observable of electro-
magnetic theory is the energy density E (q, t), given by

E (q, t) = ‖F‖2
ε,µ =

ε

2
‖E‖2 +

µ

2
‖H‖2. (3)

We are interested in the transport of the energy density E (q, t) in macroscopic envi-
ronments. To describe this regime mathematically we introduce the scale parameter

ε = λ/dn. (4)

In Eq. 4, λ is the wavelength of light and dn the average distance over which the
refractive index n =

√
ε µ : Q→ R varies, cf. [34, Chapter 22.5]. In macroscopic

environments one has λ � dn and asymptotically these can thus be studied by letting
ε → 0. In the following, we will often write Fε , E ε etc. to make the dependence of
variables on the scale parameter explicit.

1 The first derivation of geometric optics from Maxwell’s equations goes back to Sommerfeld
and Runge [44], cf. [5, Chapter III] for historical details. Derivations of geometrical optics do not
provide long time transport equations for the light energy density, cf. also [49].
2 Eq. 2 is closely related to the spacetime formulation of electromagnetic theory with F being the
components of the Faraday 2-form F = E ∧dt +B, cf. [14, Sec. 3].
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The classical approach to study short wavelength asymptotics is the Wenzel-
Kramers-Brillouin (WKB) approximation.3 However, this ansatz is limited in that
solutions are only well defined until caustics form, at which point the approximation
becomes multi-valued, and that the initial conditions must satisfy the WKB form
uε(q, t) = a(q, t)eiS(q,t)/ε . Additionally, Maxwell’s equations describe the time evo-
lution of the field F, while we are interested in the limit ε → 0 of the energy density
E ε(q, t) that depends quadratically on the field. This provides a serious obstruction
for any approach to determine the transport of the limit energy density E 0(q, t) [45].

The limitations of classical approaches to describe the transport of the limit energy
density E 0(q, t) can be circumvented by lifting electromagnetic theory to phase space
T ∗Q and studying the short wavelength limit there [16, 41]. The electromagnetic
field F can be lifted to T ∗Q using the Wigner transform [52, 16], yielding a 6×6
matrix density W ε [F] whose components are given by

W ε [F]εi j(q, p) =
1

(2π)3

∫
Q

eip·r Fε
i (q−

ε

2
r)Fε

j (q+
ε

2
r)dr. (5)

The lift of the Maxwell operator Mε to phase space is provided by its matrix-
valued symbol mε(q, p) which can formally be expanded as mε(q, p) = m0(q, p)+
εm1(q, p)+ ε2m2(q, p)+ · · · . Time evolution on phase space is described by

Ẇ ε =−{{W ε ,mε}}MB (6)

where W ε ≡W ε [F] and {{ ,}}MB is a matrix-valued “Moyal bracket” [16, Eq. 6.12].
Expanding this bracket one obtains

Ẇ ε =
1
ε
[W ε ,mε ]− 1

2i
({W ε ,mε}−{mε ,W ε})+O(ε) (7)

where { ,} is commonly denoted as a matrix-valued “Poisson bracket”;4 it is not a
Poisson bracket in the formal sense and we will return to this point in Sec. 4. In
contrast to the scalar Moyal bracket where the commutator in the first term vanishes
by the commutativity of multiplication in the algebra F (T ∗Q), in the matrix-valued
case care is needed that the first term does not diverge as ε → 0. This divergence
can be circumvented by restricting dynamics to the eigenspaces of the Maxwell
symbol mε . The diagonally identical symbol matrix is then in the ideal of the matrix
algebra and the appropriately restricted commutator [W ε ,mε ] hence vanishes; this
is the matrix-valued analogue of the Bohr-Sommerfeld quantization condition [25].
The eigenvalues of the Maxwell symbol are given by [41]

λ0 = 0 λ1 =
c

n(q)
‖p‖ λ2 =−

c
n(q)
‖p‖, (8)

3 It is by now well known that the WKB approximation goes back to work by Liouville and Green
in the first half of the 19th century.
4 The matrix-valued “Poisson bracket” is computed by performing matrix multiplication with scalar
multiplication replaced by the usual Poisson bracket, see for example [50, Appendix A].
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each having multiplicity two. Only λ1 and λ2 have physical significance, correspond-
ing to forward and backward propagation in time. We will denote the projection
onto the eigenspace associated with λa by Πa, with a ∈ {1,2}. Projecting the Wigner
distribution W ε onto the ath eigenspace and taking the limit ε → 0 yields

W 0
a = ΠaW 0

Πa =
1
2

[
I +Q U + iV

U− iV I−Q

]
dqd p. (9)

The parameters I,Q,U,V in Eq. 9 are the Stokes parameters for polarized light. This
provides much physical intuition for the projected limit Wigner distribution W 0

a .
From Eq. 7 one obtains for the time evolution of W 0

a that [16]

Ẇ 0
a = Πa

{
W 0

a ,λa
}

Πa +
[
W 0

a ,Πam1
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]
=
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W 0
a ,λa

}
+
[
W 0

a ,F
0
a
]

(10)

where F0
a = [Πa,{λa,Πa}]+Πam1Πa and, as before, m1 is the first order term in the

formal expansion of the symbol mε in the order parameter ε . Intuitively, the “Poisson
bracket”

{
W 0

a ,λa
}

describes the transport of the polarized radiation W 0
a on phase

space while the commutator
[
W 0

a ,F
0
a
]

is responsible for the change in polarization
during transport, we will again come back to this in Sec. 4. Classical radiative transfer
is a scalar theory and does not consider polarization. For unpolarized light the Stokes
parameters satisfy Q,U,V = 0. The matrix density W 0

a is then completely described
by its trace, representing the intensity I of the radiation. We thus define the light
energy density as

`= tr(W 0
i ) = L (q, p)dqd p ∈ Den(T ∗Q). (11)

It follows from Eq. 10 that the transport of ` ∈ Den(T ∗Q) is described by

˙̀=−{`,H} (12)

with the Hamiltonian H ∈F (T ∗Q) being the eigenvalue λa, that is

H(q, p) =± c
n(q)
‖p‖. (13)

The light energy density ` ∈ Den(T ∗Q) is related to the limit electromagnetic energy
density E (q) ∈ Den(Q) by the fiber integral

lim
ε→0

E ε(q, t) =
∫

T ∗q Q
`=

∫
T ∗q Q

L (q, p, t)d p (14)

and ` ∈ Den(T ∗Q) can be understood as an angularly resolved form of the electro-
magnetic energy density. Hence, the light energy density ` ∈ Den(T ∗Q) together
with Eq. 12 provide the sought after system to describe the transport of the limit
energy density E 0(q, t). Eq. 12 describes the transport of electromagnetic energy in
macroscopic environments to good approximation, as is evidenced by the success of
radiative transfer in a wide range of fields.
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2.2 Cosphere Bundle Reduction for Radiative Transfer

Eq. 12 describes radiative transfer theory as a Hamiltonian system on 6-dimensional
phase space T ∗Q∼= R3×Q. In the literature, however, the theory is usually defined
over the 5-dimensional space of “positions and directions”. The two descriptions
are related through the symmetry associated with the well known conservation of
frequency during transport. The Hamiltonian in Eq. 13 is homogeneous of degree one
in the momentum, H(q,α p) =αH(q, p), for α ∈R+, and, moreover, momentum and
light frequency are proportional. This suggests that the symmetry group associated
with the conservation of frequency is (R+, ·) acting on the fibers T ∗q Q by mα(q, p) =
(q,α p). As is well known [1, App. 4], the quotient space for this action is given by
the cosphere bundle

S∗Q = (T ∗Q\{0})/R+ (15)

and for a Hamiltonian of degree one dynamics on T ∗Q drop to a contact Hamiltonian
flow along the Reeb vector field on S∗Q [39]. The cosphere bundle S∗Q, identified
with the sphere bundle S2Q using the standard metric in R3, provides a modern
interpretation for the classical space of “positions and directions”, and the homogenity
of the Hamiltonian explains why such a description on S∗Q is possible, despite the
Hamiltonian character of the system that seemingly requires a description on an even
dimensional space.

2.3 Radiative Transfer as a Lie-Poisson System

A central result in classical radiative transfer theory is the “conservation of radiance
along a ray” [18]. The symmetry associated with this conservation law becomes ap-
parent when the light energy density `t at time t, globally over all T ∗Q, is considered
as one configuration of the system. Time evolution can then be described by the
pullback `t = η∗t `0 along the map ηt : T ∗Q→ T ∗Q that is generated by the flow of
the Hamiltonian vector field XH defined by Eq. 13, and when XH is defined globally
the set of all such maps ηt forms the infinite dimensional Lie group Diffcan(T ∗Q)
of canonical transformations [11]. With respect to the initial light energy density
`0 all physically valid configurations `t can then be described by an element ηt in
Diffcan(T ∗Q) and the group becomes the configuration space of radiative transfer.
We thus have Radiative transfer is then a Lie-Poisson system for Diffcan(T ∗Q), cf.
Fig. 3.

The Lie-Poisson structure for the group Diffcan(T ∗Q) was first studied by Mars-
den and coworkers in the context of plasma physics [32]. The Lie algebra g of
Diffcan(T ∗Q) are infinitesimal canonical transformations, that is g ∼= XHam(T ∗Q),
and by identifying the Hamiltonian vector fields with the generating Hamilto-
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Fig. 3: The structure of Lie-Poisson systems. Classical examples of such systems are the rigid body,
where the Lie group is SO(3) with a left invariant Hamiltonian, and the ideal Euler fluid, where
the Lie-group is the group Diffµ (Q) of volume preserving diffeomorphisms with a right invariant
Hamiltonian [2, 11].

nian functions, g ∼= F (T ∗Q), the dual Lie algebra g∗ becomes Den(T ∗Q).5 With
g∗ ∼= Den(T ∗Q), it is natural to consider the light energy density ` as an element in g∗.
The time evolution of ` is then described by coadjoint action Diffcan(T ∗Q)×g∗+→ g∗+
in the Eulerian representation and infinitesimally this is given by [24, Sec. 3.3]

˙̀= ad∗δH
δ`

`= ad∗H`=−{`,H} ; (16)

indeed, that the Poisson bracket describes infinitesimal coadjoint action ad∗ : g×g∗→
g∗ for Diffcan(T ∗Q) is an a posterior justification for considering the group as the
configuration space for ideal radiative transfer [32, Sec. 6]. In Eq. 16, H ≡H [`] is
the field Hamiltonian

H [`] =
∫

T ∗Q
`(q, p)H(q, p)dqd p (17)

which is the density weighted integral of the “single particle” Hamiltonian H(q, p)
in Eq. 13. With the light energy density as an element in the dual Lie algebra,
it follows immediately from the general theory of Lie-Poisson systems that the
momentum map JR is the convective light energy density and that this quantity is
conserved [30, Theorem 11.4.1], cf. Fig. 3.6 By the change of variables theorem, this
can be interpreted as conservation of light energy density along trajectories in phase
space and it provides a modern formulation and justification for “conservation of
radiance along a ray” in the classical literature. Interestingly, with the Lie-Poisson
structure a close formal analogy between ideal radiative transfer and ideal fluid
dynamics exists, cf. Table 1.

Next to the transport on T ∗Q, the time evolution of radiative transfer can also
be understood as a functional analytic flow on the space of light energy densities.

5 We disregard here some technical details in the construction of the dual Lie algebra. See for
example [24, Chapter 2.3.5.3].
6 A direct proof can be found in [24, Chapter 3.3].
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fluid dynamics radiative transfer

Lie group Diffµ (Q) Diffcan(T ∗Q)

Lie algebra Xdiv(Q) XHam(T ∗Q)

dual Lie algebra ω ∈Ω 2(Q) ` ∈ Den(T ∗Q)

coadjoint action ω̇ =−£vω ˙̀=−£XH `

classical conservation law Kelvin’s theorem conservation of radiance

Table 1: Correspondence between ideal fluid dynamics and ideal radiative transfer. The fluid velocity
is denoted by v ∈ Xdiv(Q) and ω ∈Ω 2(Q) is the fluid vorticity.

By identifying the Hamiltonian vector field XH with an anti-self-adjoint operator,
Stone’s theorem [28, Theorem 6.2.18.3] enables us to describe radiative transfer as

`t = η
∗
t `0 =Ut `0 (18)

where Ut is a unitary operator. Such a functional analytic representation of the action
of an infinite dimensional diffeomorphism group is often referred to as Koopman-
ism [21], cf. also [31, Chapter 8.4]. An interesting aspect of Eq. 18 is that it provides
a rigorous basis for the operator formulation of radiative transfer that can be found
in the classical literature, see for example [10]. Eq. 18 also provides a natural start-
ing point to include scattering effects, for example at surfaces, that do not have a
geometric but a well known functional analytic description.

3 Some Connections to the Classical Formulations

In this section, we will relate our geometric formulation of radiative transfer to
classical radiometry and geometrical optics.

3.1 Classical Radiometry

To relate the phase space light energy density ` ∈ Den(T ∗Q) to radiance, the central
quantity in the classical formulation of radiative transfer, we have to consider mea-
surements, the question Lambert was studying when he introduced the concept [22].
Measurements determine the flux of light energy density, for example through the
sensor of a camera. Mathematically, this flux can be determined using the transport
theorem of tensor calculus [31, Theorem 8.1.12]. One then obtains that the energy E
flowing through a 2-dimensional surface M in a time interval [t1, t2] is given by

E =
∫ t2

t1

∫
T−M

iXH ` =
∫ t2

t1

∫
M

c
n(q)

∫
T−q M

L (q, p)(p̄ ·n(q))dAd p̄dt (19)
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Fig. 4: Non-canonical Legendre transform relating radiative transfer to geometrical optics given by
Fermat’s principle.

where p̄ is a unit vector, n(q) the surface normal of M at q, and T−q M the positive
half-space of T ∗q Q as defined by n(q) [24, Chapter 3.2.6]. When the light energy
density is parameterized in spherical coordinates, an infinitesimal measurement can
be written as

L (q, p̄,ν)(p̄ ·n)dAd p̄ = n·(L (q, p̄,ν) p̄dAd p̄dν) (20)

and when no measurement surface, and hence no normal n, is fixed one thus has for
an infinitesimal measurement that

Λ = L (q, p̄,ν)dA⊥ d p̄dν (21)

where dA⊥(p̄) = p̄dA is the standard area form for a surface orthogonal to the flow
direction p̄. The differential 2-form Λ ∈ Ω 2(Q) provides a modern interpretation
of classical radiance. The cosine term (p · n), which is prevalent in the classical
literature but usually only justified heuristically [36], can then be obtained rigorously
through the pullback of Λ onto a surface with normal n. We refer to [24] for the
derivation of other concepts of classical radiometry such as vector irradiance.

Remark 1. In the past, it has often been overlooked that radiance is meaningful only
in the context of measurements while the quantity that genuinely is transported in
radiative transfer is the phase space light energy density ` ∈ Den(T ∗Q). This has led
to considerable confusion even in recent literature [3].

3.2 Radiative Transfer and Geometrical Optics

A question rarely considered in the classical literature on radiative transfer is the
relationship of the theory to geometrical optics. The connection can be established
by considering the Legendre transform of Fermat’s principle. As is well known,
directly performing the transform for the Lagrangian L = n(q) leads to a vanishing
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Hamiltonian [20]. Following Arnold [1],7 instead of length, given by L = n(q), we
shall hence consider the geometrical energy of a light path, given by L̂ = n2(q).
This Lagrangian can be interpreted as a diagonal metric gi j = n2(q)/c2 δi j and
the associated geodesic flow is equivalently described by the Hamiltonian Ĥ =
gi j p̂i p̂ j [19, p. 51] where p̂ is the canonical momentum which is related to the
kinetic momentum by p = ω p̂. Reverting the transition from path length to path
energy, and including the factor of ω corresponding to energy we obtain for the
Hamiltonian again Eq. 13. If we trace the diagram in Fig. 4 backwards, we see that,
from the point of view of radiative transfer, geometrical optics is a limiting case
when the amount of energy that is transported is disregarded.

4 Discussion and Open Questions

Our geometric formulation of radiative transfer and the identification of the Lie group
structures that underlie the known conservation laws clarifies and unifies earlier work
in the literature. Additionally, the use of tensor calculus overcomes the limitations
of the current formulation, for example when measurements are considered, and
it improves over earlier attempts that employed vector calculus [17] and measure
theory [38] to obtain a modern mathematical foundation for radiative transfer.8 The
derivation of radiative transfer from electromagnetic theory that was presented in
Sec. 2 largely follows recent work in applied mathematics [16, 41], which can be seen
as a refinement of earlier but little known results in plasma physics.9 Our presentation
emphasized geometric aspects of the argument and it completed the connection to
the classical formulations in the literature [16, 41, 3]. Nonetheless, the structures that
underlie many aspects of the derivation remain currently unclear. In the following,
we will collect some preliminary results on how to fill these gaps.

Additional insight into the derivation in Sec. 2 can be obtained by considering a
density matrix formulation of electromagnetic theory before the phase space lift. In
quantum mechanics, the density matrix for a pure state ψ is defined by ρ = ψ〉〈ψ
and it represents the projection operator onto the one dimensional subspace spanned
by ψ .10 One of the advantages of this formulation is that it provides a faithful
representation of the projective Hilbert space CPn that serves as the configuration
space of quantum mechanics, cf. [30, Chapter 5.4.3].11 The density matrix for the
electromagnetic field is known as the mutual coherence matrix [27, 53] and there

7 We were told this idea goes back at least to Riemann.
8 The status and shortcomings of many classical derivations of radiative transfer theory were recently
summarized by Mishchenko [33].
9 See [37] and references therein and [54]. In theoretical optics, various alternative names are
employed for the Wigner transform, cf. [4].
10 The density matrix was introduced in a famous paper by von Neumann [35] to study statistical
ensembles of states, an aspect we will not consider here but which is closely related to the questions
considered in statistical optics, cf. [27].
11 This representation of CPn is the prototypical example of a C∗- or von Neumann algebra.
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typically defined as12

Pi j(q, t, q̄, t̄) = Fi(q, t)F∗j (q̄, t̄). (22)

Analogous to the situation in quantum mechanics, the trace tr(P) of the density ma-
trix, for (q, t) = (q̄, t), is proportional to the quadratic observable, the electromagnetic
energy density E (q, t) [40]. Neither Eq. 22 nor the trace have an apparent geometric
interpretation. However, we know from Eq. 3 that the energy density is given by
E = ‖F‖2

ε,µ . Using the Faraday 2-form F = E ∧dt +B this can be written as

E (q, t) = 〈〈F,F〉〉ε,µ = F ∧?ε,µ F (23)

where ?ε,µ is the Hodge dual induced by considering the electric permittivity and
magnetic permeability as part of the metric. By definition of the wedge product, this
is equivalent to

E (q, t) = A(F⊗?ε,µ F) (24)

where A is the anti-symmetrization map [31, Def. 7.1.3]. As can be shown by a
straightforward computation, the anti-symmetrization in Eq. 24 is, in flat spacetime,
equivalent to taking the trace of F⊗F. We hence indeed have

E (q, t) = A(F⊗?ε,µ F) = tr(F⊗F). (25)

It appears that F ⊗ ?ε,µ F provides a mathematically and physically more natural
definition of the density matrix. The non-locality in the definition in Eq. 22 can
be understood by considering interference phenomena such as those arising in the
classical Young’s interference experiment, cf. Fig. 5. There, interference arises from
the superposition of the fields at the pinholes, and the interference fringes, and hence
the intensity of the electromagnetic field, can be described through the nonlocal
coherence matrix P(q, t, q̄, t), see [53]. It needs to be studied if this idea can be made
rigorous by considering the time dependence for F in Eq. 25 and exploiting that
Ft =UtF0 where Ut is a unitary operator.

As in the case of the Schrödinger equation, differentiating the definition of the
local density matrix with respect to time using the Leibniz rule and inserting Eq. 2 in
the resulting expression yields Ṗ =−[P,M] where [ , ] denotes the matrix commutator.
As is well known [13, 55], under the semiclassical symbol calculus the commutator
becomes the Moyal bracket on phase space, and, at least formally, it can be shown
that the Wigner transform is the symbol of the density operator. Using the density
matrix and its time evolution equation provides thus a more natural transition from
Maxwell’s equations on configuration space to Moyal bracket dynamics on phase
space.

12 In the statistical optics literature one typically considers statistical averages of the field compo-
nents, which we omit here. This is the analogue of the probabilistic superposition of pure states in
quantum mechanics.
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q1

q2

Fig. 5: Young’s experiment: coherent electromagnetic radiation passes through the double slit
formed by q1 and q2 and through interference forms the intensity pattern on the screen on the right.

For the Schrödinger equation, the model problem in semiclassical analysis, the
representation theory of the Heisenberg group plays a central role, as is evident from
the Stone-von Neumann theorem, which, roughly speaking, states that all formula-
tions of quantum mechanics are essentially unitarily equivalent. From the point of
view of the Heisenberg group, the short wavelength limit is the group contraction
that yields the symplectic group. A question of interest to us is to understand which
role the Heisenberg group plays for the asymptotic limit discussed in this paper. In-
teresting work in this context is for example those by Landsman [23] who discusses
connections between Lie-Poisson reduction and quantization using the Heisenberg
group.

Quite curious in the derivation in Sec. 2 are the matrix-valued “Moyal” and
“Poisson” brackets that arise for example in Eq. 7 and Eq. 10. These brackets are
known in the physics literature, e.g. [46, Chapter 16.3] [50, Appendix A], and they
also appear in the microlocal and semiclassical analysis literature, cf. [16]. However,
to our knowledge they have not been studied from a geometric point of view. One
approach to generalize the Poisson bracket to the matrix-valued case is to consider

ḟ =−{ f ,H}=−£XH f (26)

in which case the right hand side has a natural extension for arbitrary tensors. For a
matrix A, that is a (1,1) tensor, one then obtains

Ȧ =−£XH A =−{A,H}+[A, H̄] (27)

where the “Poisson bracket” for the matrix A is defined as before, as a component
wise bracket, and H̄ is the Hessian “matrix” of the Hamiltonian, that is the matrix of
second partial derivatives. Eq. 27 has the same form as Eq. 10 although it is currently
not clear to us under which conditions H̄ coincides with the first order term m1 of the
symbol. For the situation where also the generator of the dynamics is matrix-valued,
the connection between the symbol of an operator and the dispersion matrix, which
is well understood from a physical point of view, seems to play a key role, cf. [41].
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Preliminary work in the literature that considers matrix-valued quantization from a
geometric perspective is [25, 12, 8], although to our knowledge no complete picture
exists at the moment.

An interesting open question is also the transition from Maxwell’s equations to
radiative transfer in spacetime, the natural setting of electromagnetic theory. Although
no general theory of covariant Poisson brackets in spacetime exists, for the special
case of Maxwell’s equations a bracket is known [29]. Moreover, the Faraday 2-form
plays from the outset an important role in our derivation and semiclassical analysis
naturally considers spacetime operators, cf. [55]. A derivation in this setting might
also help to understand how the structure of electromagnetic theory manifests itself
at the short wavelength limit and how the symmetries of radiative transfer theory
arise.

Despite many connections, microlocal and semiclassical analysis are currently
rarely considered in geometric mechanics. We believe this is an area ripe for further
investigations. For example, in many situations microlocal analysis also allows the
description of a Hamiltonian system on phase space T ∗Q through an equivalent
partial differential equation on configuration space Q. We believe that this provides
additional insight into the plasma-to-fluid map [32] and might allow to generalize
the result. It would also be interesting to explore how existing results, for example
for the Maxwell-Vlasov system [32] or Euler-Yang-Mills fluids, cf. [14], can be
reformulated when electromagnetic theory is describes on phase space.

Although the Hamiltonian formulation of radiative transfer has been known in
plasma physics for a long time [37], it has so far not been appreciated in other com-
munities. We belief that the 5-dimensional formulation of radiative transfer that is
prevalent in the literature, and which is incompatible with a Hamiltonian description
that necessitates an even dimensional phase space, led to much confusion on the
subject. Our reduction of the 6-dimensional Hamiltonian system to a contact Hamil-
tonian system on the cosphere bundle S∗Q clarifies this relationship. The Lie-Poisson
structure of radiative transfer mirrors those of other systems in statistical mechanics
whose time evolution is describes by the Vlasov equation [32, 51]. Nonetheless,
since radiative transfer is rarely written in the form of Eq. 12 it was surprising to us
that the classical law of conservation of radiance arises from a Lie-Poisson structure.
Similarly, the structural similarities between ideal fluid dynamics and ideal light
transport in Table 1 seem, from the point of view of the classical literature, quite
remarkable.

5 Conclusion

This work owes much to Jerry Marsden, to his encouragement, and to his writings.
Jerry told us that if there is a geometric formulation of radiative transfer then it is
worth developing it. We always reminded ourselves of this when nothing seemed to
fit together. Jerry’s writings also repeatedly provided us a life line and they made
geometric mechanics accessible to us.
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[10] J. J. Duderstadt and W. R. Martin. Transport Theory. Wiley, New York, 1979.

[11] D. G. Ebin and J. E. Marsden. “Groups of Diffeomorphisms and the Motion of an Incom-
pressible Fluid”. In: The Annals of Mathematics 92.1 (1970), pp. 102–163.

[12] C. Emmrich and A. Weinstein. “Geometry of the transport equation in multicomponent
WKB approximations”. In: Communications in Mathematical Physics 176.3 (Mar. 1996),
pp. 701–711.

[13] L. C. Evans and M. Zworski. Semiclassical Analysis. Lecture Notes. Berkeley, CA: University
of California, 2011.

[14] F. Gay-Balmaz and T. S. Ratiu. “Reduced Lagrangian and Hamiltonian formulations of
Euler-Yang-Mills fluids”. EN. In: Journal of Symplectic Geometry 6.2 (June 2008), pp. 189–
237.

[15] P. Gérard. “Microlocal defect measures”. In: Communications in Partial Differential Equa-
tions 16.11 (1991), pp. 1761–1794.

[16] P. Gérard, P. A. Markowich, N. J. Mauser, and F. Poupaud. “Homogenization Limits and
Wigner Transforms”. In: Communications on Pure and Applied Mathematics 50.4 (Apr.
1997), pp. 323–379.



16 REFERENCES

[17] A. Gershun. “The Light Field”. Trans. by P. Moon, G. Timoshenko, and (Originally published
in Russian (Moscow, 1936)). In: Journal of Mathematics and Physics 18 (1939), pp. 51–151.

[18] D. S. Goodman. “General Principles of Geometrical Optics”. In: Handbook of Optics. Ed. by
M. Bass. third ed. McGraw-Hill Companies, 2010. Chap. 1, pp. 1.3–1.92.

[19] J. Jost. Riemannian Geometry and Geometric Analysis. Universitext. Springer, 2008.

[20] M. Kline and I. W. Kay. Electromagnetic Theory and Geometrical Optics. John Wiley and
Sons, 1965.

[21] B. O. Koopman. “Hamiltonian Systems and Transformations in Hilbert Space”. In: Proceed-
ings of the National Academy of Sciences 17.5 (1931), pp. 315–318.

[22] J. H. Lambert and D. L. DiLaura. Photometry or On The Measure and Gradation of Light,
Colors, and Shade. Illuminating Engineering Society of North America, 2001.

[23] N. P. Landsman. Mathematical Topics Between Classical and Quantum Mechanics. Springer
Monographs in Mathematics. Springer Verlag, 1998.

[24] C. Lessig. “Modern Foundations of Light Transport Simulation”. Ph.D. thesis. Toronto:
University of Toronto, 2012.

[25] R. Littlejohn and W. Flynn. “Geometric Phases in the Asymptotic Theory of Coupled Wave
Equations”. In: Physical Review A 44.8 (Oct. 1991), pp. 5239–5256.

[26] E. Lommel. “Die Photometrie der diffusen Zurückwerfung”. In: Annalen der Physik 272.2
(1889), pp. 473–502.

[27] L. Mandel and E. Wolf. Optical Coherence and Quantum Optics. Cambridge, UK: Cambridge
University Press, Sept. 1995.

[28] J. E. Marsden and T. J. R. Hughes. Mathematical Foundations of Elasticity. New York: Dover
Publications, 1983.

[29] J. E. Marsden, R. Montgomery, P. J. Morrison, and W. B. Thompson. “Covariant Poisson
Brackets for Classical Fields”. In: Annals of Physics 169 (1986), pp. 29–47.

[30] J. E. Marsden and T. S. Ratiu. Introduction to Mechanics and Symmetry: A Basic Exposition
of Classical Mechanical Systems. third ed. (updated and revised, online). Texts in Applied
Mathematics. New York: Springer-Verlag, 2009 (1999).

[31] J. E. Marsden, T. S. Ratiu, and R. Abraham. Manifolds, Tensor Analysis, and Applications.
third ed. Applied Mathematical Sciences. New York: Springer-Verlag, 2004.

[32] J. E. Marsden, A. Weinstein, T. S. Ratiu, R. Schmid, and R. G. Spencer. “Hamiltonian
Systems with Symmetry, Coadjoint Orbits and Plasma Physics”. In: Atti Acad. Sci. Torino
Cl. Sci. Fis. Math. Natur. 1982, pp. 289–340.

[33] M. I. Mishchenko. “Directional radiometry and radiative transfer: A new paradigm”. In:
Journal of Quantitative Spectroscopy and Radiative Transfer 112.13 (Sept. 2011), pp. 2079–
2094.

[34] C. W. Misner, K. S. Thorne, and J. A. Wheeler. Gravitation. San Francisco, CA, USA: W. H.
Freeman, 1973.

[35] J. v. Neumann. “Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik”. In: Nachr.
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