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Abstract: We present a first running video see-through augmented reality system on a consumer
cell-phone. It supports the detection and differentiation of different markers, and correct
integration of rendered 3D graphics into the live video stream via a weak perspective projection
camera model and an OpenGL rendering pipeline.

1 Introduction

Mobile devices such as head-mounted displays (HMDs) in combination with wearable
computers or compact personal digital assistants (PDAs) have become popular platforms for
video see-through augmented reality applications. While the HMD technology is still not widely
spread outside the research community today, PDAs are much more prevalent. Yet, they are not
nearly as common as cell phones. It has been estimated that by the end of the year 2005 more
than 50% of all cell phones will be equipped with digital cameras [10]. Consequently, using cell
phones as a platform for video see-through AR has the potential of addressing a brought group of
end users and applications. Compared to high-end PDAs or HMDs together with powerful
personal computers, the implementation of video see-through AR on the current fun- and smart-
phone generation is a challenging task: Low video-stream resolutions, little graphics and
memory capabilities, as well as slow processors set technological limitations. Although we are
aware of the fact that future phone generations will set new boundaries and open more
possibilities, we have realized a first prototype solution for video see-through AR on a present
consumer cell phone.

Figure 1: Video see-through example on a consumer cell-phone.



Technically, it supports optical detection of passive paper markers and the correct integration
of 2D/3D graphics into the live video stream at interactive rates. Conceptually, it allows early
experiments with such a technology for augmented reality applications. We believe that cell
phones have the potential to bring AR to a mass marked. Our prototype was evaluated on a
Nokia 7650 smart phone (cf. figure 1). It contains a 104MHz ARM processor without floating
point unit, 4MB RAM, and runs Symbian OS 6.1.

2 Related Work

Video see—through AR is concerned with two main tasks: the detection of the camera’s pose
in the environment, and the rendering of synthetic models on top of a live video stream. Much
previous work has been done on addressing these tasks throughout AR community. Marker-less
tracking [2,7,19,20] is surely the preferred method, but it is computationally expensive, requires
some information about the environment, and might apply several cameras or additional sensors.
More often, artificial markers are used, to determine position and orientation of the camera
within the environment [8,11,23]. A wide range of marker-based tracking and detection systems
exists — each with its own advantages and disadvantages [24]. Many of them follow a pattern-
matching approach and require many resources that prevent them from being used efficiently on
low-end mobile devices, such as PDAs and cell-phones. Currently, most groups focus on
wearable computers and head-attached displays for supporting mobile AR applications [3,14,15].
So far, only a few steps have been made towards hand-held devices. In [4,5,6,13] prototypes are
described that use PDAs to augment a live video stream with synthetic information. However the
necessary detection and registration computations are done on a powerful remote server to which
the PDA is connected via WLAN or GSM. The first stand—alone AR application on a PDA was
developed by TU Vienna using ARToolKit [22]. Their application can be run in two modes: One
with a remote server carrying out most of the computations, and the other one with the PDA
doing all computations itself. They achieve frame rates of around 5 fps in the remote mode, and
2.5 - 3.5 fps in the local mode, on a PocketPC, with a 400 MHz Intel XScale processor, 64MB
RAM, an IEEE 802.11b wireless network connection, and a video resolution of 320x240 pixels.
The markers used for their experiments had a 15x15cm base area and were tracked at a distance
of up to 2 meters. Siemens has developed an AR game [18] for their camera phones that
determines the pixel-flow within the video images for estimating the users’ relative lateral
(horizontal and vertical) motions. The video stream is then augmented with synthetic 2D objects.
However, marker-less or marker-based tracking is not supported since the camera’s pose is not
recovered. Consequently graphics cannot be integrated into the video stream with a correct 3D
perspective. Beside lateral motions, longitudinal (depth) motions cannot be detected. As
mentioned above, the number of phones equipped with cameras and color displays is going to
increase in the following years. Mainly driven by the game market, a lot of new technologies are
emerging around these devices. OpenGL for embedded systems and mobile devices, as an
example, was created by the Khronos group [9]. Mobile phone manufacturers, such as Nokia
have now derived their own device specified versions. We apply a pre-release version of Nokia’s
OpenGL port (Nokia Graphics Library, NLG) for our prototype.



3 Marker Detection

The implementation of a pattern-matching algorithm on today’s consumer phones would be
constrained by several technological issues:

(1) The low resolution of live video streams provided by the phone’s frame grabbing
hardware (in our case: a resolution of 160x120 pixels, 12bits color depth provides a frame rate
of 16fps; a resolution of 320x240 pixels drops the frame rate down to approximately 0.5fps).
For pattern-matching, the camera-marker distance is mostly derived from the detected edge
length of the marker. Doing this with a resolution of 160x120 pixels would either require
inapplicably large markers, or would result in an unacceptable tracking quality.
(2) The high optical distortion of the phones’ simple cameras. These cameras have been
designed for taking low-quality pictures or videos. Optical distortion, such as barrel distortion
is high. It varies strongly for each phone due to small variations in manufacturing — even if the
same phone type is considered. To undistort these effects would require additional
performance and memory capabilities, and —which is more critically for real-world
applications— the end user to perform an individual camera calibration for his/her phone.

(3) The limited processing and memory capabilities of today’s consumer phones (in our case:

a 104MHz ARM processor without floating point unit, and a total of 4MB RAM for

applications and data). For pattern-matching, a reasonable amount of memory is required to

store the pattern information of different markers, as well as a decent amount of computational

power for comparison and image transformation steps. Due to the lack of a floating point unit,

all computations for image processing and rendering have to be performed on an integer level.
Although, with upcoming phone generations, most of these issues might be addressed to allow
the implementation of a pattern-matching-based system in future, our goal was to realize a first
running system on one of today’s consumer phones.

The requirements for this are an acceptable marker detection quality and performance of
normal-sized markers (e.g., with a 10x10cm base area) at a camera-marker distance that is
suitable for phone-based applications (e.g., up to 1.5m — 1.8m) with a static and unchangeable
camera focus. In addition, the need for calibration steps by a novice end-user has to be kept at a
minimum. These requirements have to be met under consideration of the technical constraints
described above. We decided to implement a simple, low-cost marker detection algorithm which
is not based on pattern-matching, but is adapted more to the phones’ capabilities. Our goal is to
render three-dimensional graphical content perspectively correct into the video stream. If neither
external nor internal camera parameters need to be known, the detection of four non-coplanar
points on the marker is sufficient for a weak perspective projection camera model to estimate the
camera-to-image plane transform [16]. Our non-pattern-matching-based approach is resource
economical (performance and memory) and does not require a camera calibration.

3.1 Marker Design

For the reasons described above, we want to detect four non-coplanar points on the marker.
This implicates a 3D marker design. Our layout has the shape of a common Cartesian coordinate
system with three axes (cf. figure 2). The four basis points are then the end points of each axis



and the origin where all axes intersect. The axes of the marker are defined by colored line
features, which can be detected easily in the camera image. We decided to retain colors in the
video frames instead of binarizing them to encode more information than possible with the pure
feature geometry. In addition to line features, colored blob features are placed on the marker’s
faces. They are used as a barcode to encode the marker’s ID. We have experimented with
different marker designs. Our initial layout resembles a concave or convex (as in [5]) half-cube
with three faces (cf. figure 2a). The concave marker is better suited if placed in corners than the
convex version. A later design uses only the bottom face and free-standing vertical axis (cf.
figure 2b). The advantage of the first layout is that a larger barcode can be encoded on two more
faces. The advantage of the second design is that it supports a 360 degree surround view around
the vertical axis. This is because all base points are visible simultaneously from most
perspectives. The only impossible views are those, in which the vertical axis occludes one of the
others.

(a) (b)

Figure 2: Two different marker designs.

As for many other approaches, our markers are self-made and are built from paper. Thus, they
are easy to create with a color printer.

3.2 Finding the Base Points
To speed up the image analysis, inter frame information is used whenever possible: As soon as

the marker has been detected in one frame, a search window is defined that constrains the image
processing in the following frame (cf. figure 3a). Initially, this window covers the entire image
area. If the maker cannot be found in »n consecutive frames, the search window has to be
initialized. Searching for features within the search window is done by tracing horizontal or
vertical scan lines in every mth pixel row or column' until two consecutive intersections with a
feature are determined. The size of m is estimated heuristically, based on the maximum image
resolution and the size of the search window which is proportional to the size of the projected
marker. Due to our marker design, the detected feature must be the edge of the most horizontal
marker axis. A feature is detected based on a relative increase in one of the R/G/B channels —
also allowing to identify the specific axis. This is done with the following conditions:

R: (T<r)&(C,g<r)&(C,b<r)

G: (r<g&lc,r<galc,p<g) D

B: (T<b)&(C,g<b)&(C,r<b)



Each color channel [ 7,g,b ] of a pixel is compared with the corresponding other two
channels after scaling them with an individual color coefficient[ C,,C,.C,.C,.C,.C, .
These coefficients approximate the camera’s relative color response and are estimated during the
color calibration step (section 3.4). A general threshold 7 is used in addition for ensuring a high
enough color response in each channel. Note, that wrong features might be detected (e.g., the
colored blobs at the lower left in figure 3a). At this stage, we are not able to differentiate
between features that belong to the marker, and those that do not. Thus, all of them will be
processed in the same way. Wrong features, however, will be identified in the following steps,
because they do not lead to a valid marker layout or do not satisfy pre-defined criteria (such as a
relative minimum edge length, connectivity to already detected lined features, etc.). In most
cases, wrong features are ignored and the scanning process is continued. Some cases, however,
in which features are classified as wrong very late (e.g., because they resemble correct features),
will make the marker detection fail for the particular frame. This causes the search window to be
initialized.

(a) (b)
Figure 3: (a) Straight scan lines in two-dimensional search window. (b) Feature intersections and
one-dimensional search windows to trace edges.

The slope of the line that connects the two feature intersections is computed next. It gives a
first estimate of the gradient of the line-feature’s edge. The edge is traced in both directions
using a one-dimensional search window that is normal to the gradient (cf. figure 3b) until the
two endpoints are reached. The result is the edge and the endpoints of the most vertical marker
axis in the image (cf. figure 4a).

(b)

Figure 4: (a) Edge of most vertical axis. (b) Rectangular scan tracks to find attached axes.

(c) Edges of all axes before correction. (d) Centers of all axes.

The other two axes have to emerge from one of the detected endpoints. To find them, we
apply scan tracks that orbit the endpoints in rectangular paths with increasing radii until two



consecutive intersections on two different line features are found (cf. figure 4b). This can only be
the case for one endpoint. As for the first axis, the slopes between the intersections are computed
to estimate the gradients of the edges which are used to trace them in both directions until their
endpoints are reached. The results are the edges of the remaining axes and their four endpoints
(cf. figure 4c). During the edges are traced, their average width is determined and continuously
updated. This allows to estimate the center of the axes and to correct the position of the three line
features (cf. figure 4d). Finally, the three endpoints which intersect are merged into a single one.
The remaining four endpoints of the line features represent the base points Py, P, P> and P; of
the marker coordinate system.

3.3 Reading out the Barcode

Using the pixel projections of the base points on the image plane [u,v/p, 0< i< 3 allows
reading out the encoded marker ID. The colored blobs are placed at know positions on the faces
of the marker. Each two axes span one face over three known points (a subset of the base points).
These points allow to address each surface point on the corresponding face in a normalized two-
dimensional coordinate system. Thus, the positions of the blobs can be described as Barycentric
coordinates and linear interpolation on the projected face can be applied to estimate each blob’s
projected pixel positions in the image (cf. figure 5):

[u’v]Pl - [u’V]Po u
[u’v]B = [”9"]130 + [u’v]PZ _[M’V]PO x| v 2

[qu]Ps - [”aV]Po w

Figure 5: Estimating the blob positions analytically by linear interpolation within the projected
face-space (one of the known parameters u, v and w has to be 0 to indicate the correct face).

To address lens distortion, a blob’s position is computed analytically, and a small search
region around the computed pixel position is scanned to look up its color. This is done for each
blob — in a predefined face- and blob-order. The acquired colors represent states of single
barcode elements whose ranks are defined by the order of the readout. In our current
implementation, each blob can have one of four possible states (or colors): absent (white), red,
green, or blue. For the three-face-marker design and a maximum of four blobs per face, as an
example, a total number of 4= 16,777,216 different IDs can be encoded theoretically.



Reading out the barcode does not have to be done continuously, since it is unlikely that a
different marker is visible in every consecutive frame. Thus, it is sufficient to look for a new
marker in every nth frame.

3.4 Color Calibration

The detection of line and blob features is based on relative increases in the R/G/B channels of
each pixel. The decision whether a pixel is red, green, blue, white, or anything else is done
heuristically based on an approximated camera response function that is parameterized with the
color coefficients for each color channel (equation 1).

Match the cross ond

the marker

Figure 6: Interactive color calibration step.

These values (and consequently the success of the feature detection) depends on the absolute
color of the features (which may vary if printed with different color printers), from extreme
changes in the lighting situation, and from the camera response. To obtain good estimates, the
color coefficients are initialized through an interactive color calibration routine. As illustrated in
figure 6, the user has to match an outline of the marker coordinate system rendered on top of the
video stream with the perspective on the real axes shown in each frame. Once aligned, a button
has to be pressed to take color samples which are used to estimate the coefficient values as
follows: Three sample pixels (one in the center and two at the outer extends) on each marker axis
(red, green and blue) are taken out of n consecutive frames. The ratios between the sample
pixels’ color channel of the same frame leads to the corresponding color coefficients for this
frame. As an example, the color coefficient that allows to compare red with green is computed
with C,=rlg and so on. This results in 3*n possibilities for each of the six coefficients. We

select the highest value for each coefficient among all frames to make equation 1 less sensitive to
noise.

4 Perspective Rendering

Our goal is to render three-dimensional graphics perspecively correct (i.e., relative to the
marker, depending on the perspective of the camera) into the displayed live video stream. Since
neither intrinsic nor extrinsic camera parameters are known, we apply an affine object
representation presented by Vallino and Kutulakos [21]. They do not estimate the absolute



position and orientation of the camera, but interpolate each pixel representation of 3D scene
vertices with respect to the marker’s projection on the image plane. This method allows being
fully independent of the external and internal camera parameters — and consequently from
underlying hardware and optics. Knowing the base point’s world coordinates [x, y,z],,0<i <3

and their projections on the image plane [u,v],,,0<i<3, two vectors y,¢ that span the image

plane within the affine coordinate system can be determined as follows:

X = [uPl ~Upg,Upy —Upg,Up; _uPO]

¢= [VP1 ~Vpo>Vp2 T VposVp3 — VPO]

3)

The direction vector of the camera ¢ is normal to the image plane and can be computed

through the cross-product of y and ¢:
c=¢xy (4)

These three vectors are composed into a 4x4 matrix that maps normalized frame coordinates
(i.e., normalized 3D vertices within the frame defined by the axes spanned through the base
points) into window coordinates (i.e., 2D pixles) via interpolation on the image plane:

X Upg
p— ¢’ Vpo
- r (5)
G 0.0
10.0 0.0 0.0 1.0]

Essential for the applicability of this method is that the base points are non-coplanar. They
define an affine coordinate frame into which the model has to be transformed first. This
normalization step is realized with a simple scaling matrix:

1
P1- PO

00 — 1
NF = P2—-P0

0.0 0.0 0.0

0.0 0.0 (6)

1 .
P3— PO (with P1=10,0,0], P1=|x,0,0],

0.0 00 00 1.0 | P2=[0,5,0],and P3=[0,0,z])

0.0 0.0

The multiplication of the scene vertices that are normalized to the affine coordinate frame
with the y and ¢ matrix-rows of P results in the interpolated pixel positions of their
projections within the video stream. Due to the lack of the extrinsic camera parameters, the
absolute distance from each vertex to the camera cannot be computed. These values are
necessary for performing z-buffering. However, the multiplication of the normalized vertices



with the ¢ row of P results in relative depth ratios that are sufficient for a depth test. Thus, they

can be used for z-buffering. The affine object representation provides both, an acceptable
accuracy for rendering 3D scenes via a weak perspective projection, and fast projection
computations via simple interpolations. Moreover this method can be fully integrated into
OpenGL’s transformation pipeline. The multiplication of P results already in window
coordinates (i.e., in pixel positions). However, it is the viewport transformation’s task to map
normalized device coordinates (i.e., normalized to a range of [—11]) into window coordinates.

In standard OpenGL implementations, the viewport transformation cannot be disabled for such a
special usage of the transformation pipeline. A solution to this problem is to apply its inverse
which neutralizes the effect of the following viewport transformation. Thus, window coordinates
are mapped to device coordinates, and back to window coordinates. The inverse of the viewport
transformation consists of a scaling followed by a translation:

2 0.0 0.0 0.0
max u
- 5 1.0 00 0.0 -1.0
0.0 0.0 0.0 0.0 1.0 0.0 -1.0 (7)
ND = max v *
- { 0.0 00 1.0 05
00 00 ——— 0.0
Ytobj size 0.0 0.0 00 1.0
| 0.0 0.0 00 1.0 |

The coefficient 0bj size is reasonable for scaling depth values to the desired range. It depends
on the maximal absolute z extend of the model in world coordinates. The composition of all
three matrices can then be copied onto OpenGL’s matrix stack, as illustrated in figure 7.

NF |+*| AP |*| ND

model-view transform.
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Figure 7: Integration of affine object mapping into the OpenGL transformation pipeline.

Note that the perspective division is not required and will not be performed in this case.
Having the transformation pipeline set up as described above, the entire three dimensional scene
(including geometry, light sources, clipping planes, etc.) will automatically be mapped correctly
into the video stream, as shown in figure 1.



5 Results and Discussion

We have described a first running system that supports video see-through augmented reality
on a current consumer cell-phone. It is adapted to the technological constraints of today’s
phones, such as low video resolution, limited computational performance and memory, and high
optical distortion of integrated cameras. We aim at applications, such as interactive tour guiding
for museums and tourism, as well as at mobile games. The choice of a weak perspective
projection camera model and an affine object representation does not require to know the
camera’s intrinsic and extrinsic parameters in terms of rendering three-dimensional graphics
perspectively correct into the video stream. This might be a disadvantage for some applications,
because the position of the camera relative to the marker remains unknown. However, this
approach can deal with the high optical distortion and the low image resolution without requiring
the end user to perform any camera calibration step. The application of resource-intensive
pattern-matching approaches is not necessary (and probably not possible on today’s consumer-
level phones) to support such tasks. Markers can be differentiated by reading out a barcode
instead of matching them against —in some cases many— different sample patterns. As described
earlier, our phone’s frame grabber delivers 16 images per second with a resolution of 160x120
pixels and a color depth of 12 bits. Detecting the marker and reading the barcode requires
approximately 25% performance - thus we achieve an average frame rate of about 12fps. The
performance of the rendering step depends on the complexity of the scene. In the example shown
in figure 1, the Beetle consists of 404 triangles, 6 textures and was Gouraud-shaded with a single
point light source. The final frame rate which includes frame grabbing, marker and barcode
detection, as well as rendering is 4-5fps. The marker size is 10x10x10cm and can be detected in
a range of 30cm — 1.5m. However, the phone’s camera and consequently the marker detection
are sensitive to the environment lighting. The light radiated by phosphor tubes, for instance,
cases a strong interference pattern (visible horizontal lines) in the video images, which in most
cases causes the image processing to fail. Since we detect colored features instead of binarized
ones, varying lighting situations can cause color shifts. If these shifts become too extreme our
relative color increase heuristic does not hold. In such a case better results can be achieved by
estimating new color coefficient parameters by performing the color calibration step. In our
current implementation it is not possible to detect more than one marker at once, but we believe
that our approach can be extended to support this. This belongs to our future work. he detection
of two dimensional markers is possible, if the application is only interested in getting a rough
idea about where the user is located. If no graphics has to be rendered perspectively correct, the
barcode of the marker which is in the camera’s viewing range is sufficient to provide a spatial
awareness. This is similar to the application of infrared emitters that broadcast their IDs within a
limited working range. Since in this case a much lower performance is required than for a 3D
video see-through application, a higher image resolution can be used for marker detection. This
results in a higher detection reliability. As it is the case for PCs, the graphics capabilities of cell-
phones are clearly driven by the game industry. Vendors, such as ATI and nVidia, already offer
the first 3D graphics acceleration chips for cell-phones [1,12]. Autostereoscopic displays are
available for off-the-shelf phones [17] for viewing graphics in 3D. The processors of phones are



becoming continuously faster and memory restrictions like today will become history. It is just a
matter of time, until the integrated cameras of cell-phones are not only used for taking pictures
of videos, but also as interaction devices. In this paper we demonstrated a first approach to a
traditional augmented reality topic. We believe that many more applications will follow — also
outside a pure AR scope.
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