A pathway to quantifying atmospheric predictability?

Sebastian Hoffmann (Magdeburg), Yi Deng (Georgia Tech), Christian Lessig (Magdeburg)

Can we do more?

Two kind of errors:

- 1. Errors from the neural network itself (underfitting)
- 2. Limited inherent predictability of the atmosphere

Can we do more?

Two kind of errors:

- 1. Errors from the neural network itself (underfitting)
- 2. Limited inherent predictability of the atmosphere

Mesoscale

ERA5 900hPa Vorticity & Divergence

Temporal resolution: 3h

Spatial resolution: 0.14°

Time-lag: 2 day

Mesoscale

ERA5 900hPa Vorticity & Divergence

Temporal resolution: 3h

Spatial resolution: 0.14°

Time-lag: 2 day

Mesoscale

ERA5 900hPa Vorticity & Divergence

Temporal resolution: 3h

Spatial resolution: 0.14°

Time-lag: 2 day

Synoptic scale

NCEP/NCAR Reanalysis

Geopotential Height (250, 500, 850hPa)

Temporal resolution: daily means

Spatial resolution: 2.5°

Time-lag: 3-6 days

Synoptic scale

NCEP/NCAR Reanalysis

Geopotential Height (250, 500, 850hPa)

Temporal resolution: daily means

Spatial resolution: 2.5°

Time-lag: 3-6 days

Synoptic scale

NCEP/NCAR Reanalysis

Geopotential Height (250, 500, 850hPa)

Temporal resolution: daily means

Spatial resolution: 2.5°

Time-lag: 3-6 days

Thanks for your attention!

Check out our paper at https://arxiv.org/abs/2202.01897

Code available at https://github.com/sehoffmann/atmodist