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Large Scale Representation Learning 
of Atmospheric Dynamics

Can we train one neural network model that encapsulates all Earth system dynamics by 
self-supervised training on large amounts of spatio-temporal observations?
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Scientific insight
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Motivation
• Availability of petabytes of unlabelled observational and 

quasi-observational data 
– Data contains critical information, e.g. about unresolved 

process and their feedbacks to coarser scales
• Self-supervised, large scale representation learning allows 

one to make use of this data and amortizes training costs
– Methodology has led to breakthroughs in natural lan-

guage processing and computer vision (e.g. GPT-3)

Benefits
• Pre-trained network can be used with small computational 

costs for a wide range of applications 
– Highly compact representation of ERA5 with O(GB) 
– Better accuracy than directly training for application
– Amortize training costs on very large data sets
– Weather forecasting, climate projections, downscaling, ...

• Possible new scientific insights by accessing the spatio-tem-
poral interactions encoded in the network (e.g. attention)

Example applications

christian.lessig@ovgu.de

Training 
Self-supervised training with spa-
tio-temporal extension of BERT 
masked language model:

Multiformer 
• Transformer-based architecture
– Scales well to very large datasets
– Local network applied to neigh-

bourhood in space-time
• One transformer per physical field 

and possibly vertical level
– Respects properties of fields, 

coupling through cross-attention
– Fields can easily be added and 

removed

Training with ensemble of tail networks to learn 
statistical representation of quasi-chaotic atmo-
spheric dynamics and improve training behaviour:

observation

loss

Proof-of-concept: train one transformer neural network on O(TB) of ERA5 reanalysis data 

Zero-shot forecasting performance
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Example for predictions
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Results for vorticity, 975 hPa, 0.25° (smoothed with 5x5 box filter)
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