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  ◦ Think of large language models: ChatGPT, GPT-X, PaLM, ...

  › Useful for scientists (reviews, grant applications, thesis 
appraisals, ...) 

  › But not directly useful for science
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Feature spaces deep 
in the network reveal 
intrinsic structure of 
the data

Large scale representation learning
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Can we perform representation learning  
in and for science?
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  ◦ Very large amounts of observational data

  › ERA5 reanalysis: 6+ PB

  › ESA MetOp-SG satellites: 8 x 864 GB/day 

  › Data essentially completely unlabelled

  ◦ Very similar situation in high energy physics, astronomy, 
DNA sequencing, ...

GPT-3: 1011 tokens
ERA5: 514 tokens

Representation learning for science?
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  › Central issue for forecasting and climate projections 
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  ◦ Very large amounts of observational data

  ◦ No complete classical model for system and dynamics

  ◦ Supervised training imposes scientific theory

  › Self-supervised training is more “open-minded“ about 
the relationships and structure in the data

Representation learning for science?
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AtmoRep 
 

Large scale representation learning of 
atmospheric dynamics
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- forecasting
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- model correction
- ...
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  ◦ Neural network model:
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large language models, Dall-E, diffusion models
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  ◦ Connects physics (expressed using mathematics) with 
machine learning model

  › General model allows to include all effects in the data

  ◦ Intrinsically statistical/probabilistic formulation

  › Fits the statistical/chaotic nature of the atmosphere

  ◦ Neural network model as factorization of 

  › Loss (expectation maximization, ELBO, ...) has clear 
connection to physical model

A theoretical formulation
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Multiformer

  ◦ Plug-and-play of fields

  › Fields can be added/removed with limited (or no) 
computational effort

  ◦ Cross-attention allows for explicit introspection of inter-
action between fields

  ◦ Different physical fields with different properties have 
separate latent spaces (and transformations for these)
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AtmoRep network architecture

  ◦ Network is local in space-time
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AtmoRep network architecture

  ◦ Transformer as network architecture

  › Scales well to very large data-sets

  › Generative model (with decoder)

  › Attention maps provide (physical) interpretability
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Network architecture

What’s the right network architecture?

Doesn’t matter!

(perhaps: use a transformer)
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Network architecture

“[...] architectural details such as network width or depth 
have minimal effects within a wide range.”1

1 J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford, J. Wu, and D. Amodei. Scaling laws for neural language models, 2020.
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Scaling Vision Transformers

Xiaohua Zhai?, Alexander Kolesnikov?, Neil Houlsby, Lucas Beyer?

Google Research, Brain Team, Zürich

{xzhai, akolesnikov, neilhoulsby, lbeyer}@google.com

Abstract

Attention-based neural networks such as the Vision Trans-
former (ViT) have recently attained state-of-the-art results
on many computer vision benchmarks. Scale is a primary
ingredient in attaining excellent results, therefore, under-
standing a model’s scaling properties is a key to designing
future generations effectively. While the laws for scaling
Transformer language models have been studied, it is un-
known how Vision Transformers scale. To address this, we
scale ViT models and data, both up and down, and character-
ize the relationships between error rate, data, and compute.
Along the way, we refine the architecture and training of ViT,
reducing memory consumption and increasing accuracy of
the resulting models. As a result, we successfully train a
ViT model with two billion parameters, which attains a new
state-of-the-art on ImageNet of 90.45% top-1 accuracy. The
model also performs well for few-shot transfer, for example,
reaching 84.86% top-1 accuracy on ImageNet with only 10
examples per class.

1. Introduction
Attention-based Transformer architectures [45] have

taken computer vision domain by storm [8, 16] and are be-
coming an increasingly popular choice in research and prac-
tice. Previously, Transformers have been widely adopted in
the natural language processing (NLP) domain [7, 15]. Opti-
mal scaling of Transformers in NLP was carefully studied
in [22], with the main conclusion that large models not only
perform better, but do use large computational budgets more
efficiently. However, it remains unclear to what extent these
findings transfer to the vision domain, which has several
important differences. For example, the most successful
pre-training schemes in vision are supervised, as opposed to
unsupervised pre-training in the NLP domain.

In this paper we concentrate on scaling laws for transfer
performance of ViT models pre-trained on image classifica-

?equal contribution

Figure 1. Few-shot transfer results. Our ViT-G model reaches
84.86% top-1 accuracy on ImageNet with 10-shot linear evaluation.

tion tasks. In particular, we experiment with models ranging
from five million to two billion parameters, datasets ranging
from one million to three billion training images and com-
pute budgets ranging from below one TPUv3 core-day to
beyond 10 000 core-days. Our main contribution is a char-
acterization of the performance-compute frontier for ViT
models, on two datasets.

Along the way, we create an improved large-scale train-
ing recipe. We investigate training hyper-parameters and
discover subtle choices that make drastic improvements in
few-shot transfer performance. The few-shot transfer evalua-
tion protocol has also been adopted by previous large-scale
pre-training efforts in NLP domain [6]. Specifically, we
discover that very strong L2 regularization, applied to the
final linear prediction layer only, results in a learned visual
representation that has very strong few-shot transfer capabili-
ties. For example, with just a single example per class on the
ImageNet dataset (which has 1 000 classes), our best model
achieves 69.52% accuracy; and with 10 examples per class
it attains 84.86%. In addition, we substantially reduce the
memory footprint of the original ViT model proposed in [16].
We achieve this by hardware-specific architecture changes
and a different optimizer. As a result, we train a model
with two billion parameters and attain a new state-of-the-art
90.45% accuracy on ImageNet.
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Figure 5: OOD classification performance. Axes are log-scaled as proposed in (Taori et al., 2020). ViT-B
and ViT-L are trained on subsets of varying size and varying number of steps on JFT (Zhai et al., 2022a).
Fine-tuning boosts both ImageNet and ObjectNet performance, but the increase is more pronounced for
in-domain data, which decreases eective robustness (Andreassen et al., 2021), visible as a rightwards shift
on the plot. Same data as in Table 11.

square format and then take a 87.5% central crop. Image input resolution is 224px for pre-trained checkpoints
and 384px, 518px, 560px for models fine-tuned on ImageNet.

Results. We can confirm results from (Taori et al., 2020; Djolonga et al., 2021; Kolesnikov et al., 2020) that
scaling the model increases out-of-distribution performance in line with the improvements on ImageNet.
This holds true for models that have only seen JFT images, and for models fine-tuned on ImageNet. In both
cases, ViT-22B continues the trend of better OOD performance with larger models (Figure 5, Table 11). While
fine-tuning boosts accuracy on both ImageNet and out-of-distribution datasets, the eective robustness (An-
dreassen et al., 2021) decreases (Figure 5). Even though ImageNet accuracy saturates, we see a significant
increase on ObjectNet from ViT-e/14 to ViT-22B.

4.3 Transfer to dense prediction

Transfer learning for dense prediction is critical especially since obtaining pixel-level labels can be costly.
In this section, we investigate the quality of captured geometric and spatial information by the ViT-22B
model (trained using image-level classification objective) on semantic segmentation and monocular depth
estimation tasks.

4.3.1 Semantic segmentation

Experimental setup. We evaluate ViT-22B as a backbone in semantic segmentation on three benchmarks:
ADE20K (Zhou et al., 2017b), Pascal Context (Mottaghi et al., 2014) and Pascal VOC (Everingham et al.,
2010). We analyze the performance in two scenarios: first, using a limited amount of data for transfer;
second (in Appendix E.1), comparing end-to-end fine-tuning versus a frozen backbone with either a linear
decoder (Strudel et al., 2021) or UperNet (Xiao et al., 2018). The number of additional parameters (⇡ 1M for
linear and⇡ 783M for UperNet) is negligible compared to the size of the backbone. We use a fixed resolution
(504px) and report single scale evaluation.
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Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

  ◦ Transformer encoder:

From: A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. 
Bengio, H. Wallach, R. Fergus, S. Vish- wanathan, and R. Garnett, editors, NeurIPS, volume 30. Curran Associates, Inc., 2017.
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  ◦ Self attention block:

From: A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. 
Bengio, H. Wallach, R. Fergus, S. Vish- wanathan, and R. Garnett, editors, NeurIPS, volume 30. Curran Associates, Inc., 2017.

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QKT

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4
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variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

Layer
Norm

Layer
Norm

Key architectural change 
to go from 72% to 74.5% 
accuracy with 22 billion 
parameters
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Network architecture: the bitter lesson

1 Rich Sutton, 2019; http://www.incompleteideas.net/IncIdeas/BitterLesson.html

“We have to learn the bitter lesson that building in how we think we 
think does not work in the long run. The bitter lesson is based on 
the historical observations that 1) AI researchers have often tried 
to build knowledge into their agents, 2) this always helps in the 
short term, and is personally satisfying to the researcher, but 3) in 
the long run it plateaus and even inhibits further progress, and 4) 
breakthrough progress eventually arrives by an opposing approach 
based on scaling computation by search and learning.”1
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Network architecture

1.  Deep learning is a very large optimization problem

  › LayerNorms are key “trick“ to keep optimization well 
conditioned

  › If training is possible, this leads to effective and gener-
alizing performance

  › Convergent training with trillions of parameters is, from 
a scientific point of view, a miracle
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Network architecture

2.  Amount of training data usually more important than 
overall network architecture

  › Transformer: simple building blocks that run efficiently 
on state-of-the-art compute hardware

  › Pre-training to work on problems with little labeled data

  › Representation learning to obtain networks that are 
amenable to different problems in a domain

  › Scale network size with training data
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Network architecture

3. Loss and training protocol can play a critical role

  › Self-supervised training improves results often even 
when labels are available

  › Simple is usually better: how well can the loss be opti-
mized?
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Network architecture: weather forecasting

  ◦ Meterologists spent a lot of time thinking about what small 
sub-problem is amenable to machine learning and what the 
optimal network architecture is
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Network architecture: weather forecasting

  ◦ Meterologists spent a lot of time thinking about what small 
sub-problem is amenable to machine learning and what the 
optimal network architecture is

  ◦ Training large networks to solve the entire problem by far 
outperforms everything else

  › Computer scientists at NVIDIA, Deepmind ...

  › Training on data curated by domain scientists
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Network architecture

  ◦ What also matters ....

Scaling Vision Transformers to 22 Billion Parameters
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Abstract

The scaling of Transformers has driven breakthrough capabilities for language models. At present, the
largest large language models (LLMs) contain upwards of 100B parameters. Vision Transformers (ViT) have
introduced the same architecture to image and video modelling, but these have not yet been successfully
scaled to nearly the same degree; the largest dense ViT contains 4B parameters (Chen et al., 2022). We
present a recipe for highly efficient and stable training of a 22B-parameter ViT (ViT-22B) and perform a
wide variety of experiments on the resulting model. When evaluated on downstream tasks (often with a
lightweight linear model on frozen features), ViT-22B demonstrates increasing performance with scale. We
further observe other interesting benefits of scale, including an improved tradeoff between fairness and
performance, state-of-the-art alignment to human visual perception in terms of shape/texture bias, and
improved robustness. ViT-22B demonstrates the potential for “LLM-like” scaling in vision, and provides
key steps towards getting there.

1 Introduction

Similar to natural language processing, transfer of pre-trained vision backbones has improved performance
on a wide variety of vision tasks (Pan and Yang, 2010; Zhai et al., 2019; Kolesnikov et al., 2020). Larger
datasets, scalable architectures, and new training methods (Mahajan et al., 2018; Dosovitskiy et al., 2021;
Radford et al., 2021; Zhai et al., 2022a) have accelerated this growth. Despite this, vision models have trailed
far behind language models, which have demonstrated emergent capabilities at massive scales (Chowdhery
et al., 2022; Wei et al., 2022). Specifically, the largest dense vision model to date is a mere 4B parameter
ViT (Chen et al., 2022), while a modestly parameterized model for an entry-level competitive language model
typically contains over 10B parameters (Raffel et al., 2019; Tay et al., 2022; Chung et al., 2022), and the largest
dense language model has 540B parameters (Chowdhery et al., 2022). Sparse models demonstrate the same
trend, where language models go beyond a trillion parameters (Fedus et al., 2021) but the largest reported
sparse vision models are only 15B (Riquelme et al., 2021).

This paper presents ViT-22B, the largest dense ViT model to date. En route to 22B parameters, we uncover
pathological training instabilities which prevent scaling the default recipe, and demonstrate architectural
changes which make it possible. Further, we carefully engineer the model to enable model-parallel training at
unprecedented efficiency. ViT-22B’s quality is assessed via a comprehensive evaluation suite of tasks, ranging
from (few-shot) classification to dense output tasks, where it reaches or advances the current state-of-the-art.
For example, even when used as a frozen visual feature extractor, ViT-22B achieves an accuracy of 89.5% on

Core contributors. Correspondence: dehghani@google.com
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T
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What is a token?

  ◦ Key property of transformers: sequence of inputs is pro-
cessed simultaneously

  › Language: input is sentence with words being tokens

  › Images: small image patches
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The sun was shining bright.

What is a token?
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The sun was shining bright.

What is a token?
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The sun was shining bright.

sun

shining

What is a token?
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What is a token?What is a token?
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What is a token?What is a token?

token: small 
neighborhood 
in space-time
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What is a token?What is a token?
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Spatio-temporal BERT

  ◦ Self-supervised training with variation of BERT masked 
language (or token) model
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Spatio-temporal BERT
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Spatio-temporal BERT
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Spatio-temporal BERT

Flatland
view
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Spatio-temporal BERT

Flatland
view

local 
window
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Spatio-temporal BERT

Flatland
view of 
BERT
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Spatio-temporal BERT

  ◦ Self-supervised training with variation of BERT masked 
language language model

  › Natural interpretation as forecasting / hindcasting /   
interpolation
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  ◦ Self-supervised training with variation of BERT masked 
language language model

  › Natural interpretation as forecasting / hindcasting /   
interpolation

  › Random masking and distortions (noising, coarsen-
ing) ensures that a probabilistic model is learned

Spatio-temporal BERT
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Statistical loss

  ◦ Machine learning: Training on MSE loss is problematic in 
terms of training dynamics

  › One reason for overly smooth predicitons
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Statistical loss

  ◦ Machine learning: Training on MSE loss is problematic in 
terms of training dynamics

  ◦ Training on just the mean is sub-optimal to learn a prob-
abilitic/statistical representation of the dynamics and the 
system
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Statistical loss: experiments

  ◦ BERT with conditional masking

  ◦ 975 hPa (high frequency) vorticity

  ◦ 40 years of training data
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Statistical loss

no ensemble, MSE
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Statistical loss

no ensemble, MSE

ensemble=10, MSE+stats
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Statistical loss

  ◦ Predictions: 

Prediction
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Statistical loss
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AtmoRep: in-context learning

  ◦ In-context learning: ability to solve tasks without training 
with zero-/few-shot evaluation
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AtmoRep: in-context learning

  ◦ In-context learning: ability to solve tasks without training 
with zero-/few-shot evaluation

  › Language models: chat programs, translation, auto-cor-
rection, ... from training on next sentence prediction task

  › Natural language used to specify task
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AtmoRep: in-context learning

  ◦ In-context learning: ability to solve tasks without training 
with zero-/few-shot evaluation

  › Language models: chat programs, translation, auto-cor-
rection, ... from training on next sentence prediction task

  › Natural language used to specify task

 

What is in-context learning for AtmoRep                  ?



103© Christian Lessig, 2023

AtmoRep: in-context learning

  ◦ The model                   implies that what we want to “con-
trol“ is the output state    without re-learning
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AtmoRep: in-context learning

  ◦ The model                   implies that what we want to “con-
trol“ is the output state    without re-learning

positional encoding
for output
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AtmoRep: in-context learning

  ◦ The model                   implies that what we want to “con-
trol“ is the output state    without re-learning

  ›    : spatial and temporal location, resolution, quality

  › Few shot: “explain“     to the network



106© Christian Lessig, 2023

AtmoRep: in-context learning

  ◦ The model                   implies that what we want to “con-
trol“ is the output state    without re-learning

  ›    : spatial and temporal location, resolution, quality

  › Few shot: “explain“     to the network

  ◦ Does this make the network a scientific model?
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“I confess even to this day that I still don’t understand 
quantum mechanics, and I’m not even sure I really 
know how to use it all that well. And a lot of this has to 
do with the fact that I still don’t understand it.”

John Clauser, 2002

Quoted from https://www.nytimes.com/2022/10/04/science/nobel-prize-physics-winner.html
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Zero shot forecasting

BERT
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BERT BERT-Forecast

Zero shot forecasting
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BERT BERT-Forecast

futurepast

Zero shot forecasting
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Zero shot forecasting
29.8.2005, 14:00vorticity
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Zero shot forecasting
29.8.2005, 14:00

Katrina
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Representation learning for science

  ◦ Learn a domain-specific but task-independent neural  
network that is useful for a range of applications

  › Self-supervised training on very large amounts of data 
with very large networks

  ◦ Many scientific disciplines have large amounts of unla-
belled observational data

  › BERT-like masked auto-encoder task is very general and 
meaningful in many domains
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Representation learning for science

  ◦ Can large representation networks trained on observational 
data serve as scientific models?

  › Self-supervised training to obtain “untainted“ model

  › Discover unknowns relationships in data through  
in-context learning?

  › Data curation as central task for scientists?
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AtmoRep data
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ERA5 versus ImageNet
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ERA5 versus ImageNet

vorticity
divergence
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stream function
velocity potential
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ERA5 versus ImageNet

ImageNet

≈ velocity
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ERA5 versus ImageNet
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ERA5 versus ImageNet

vorticity
divergence

velocity
vector field

stream function
velocity potential
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small scale detail
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Embedding of tokens

multiformer
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Embedding of tokens
data 

loader embed tailmultiformer
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Embedding of tokens
data 

loader embed tailmultiformer
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Embedding network

  ◦ Multiformer models longer range effects and field inter-
actions in a rich latent space



131© Christian Lessig, 2023

Embedding network

  ◦ Multiformer models longer range effects and field inter-
actions in a rich latent space

  › Embedding network provides rich encoding of input 
field
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Embedding network

  ◦ Multiformer models longer range effects and field inter-
actions in a rich latent space

  › Embedding network provides rich encoding of input 
field

  › Embedding network allows for multi-resolution repre-
sentation per field, i.e. different token sizes
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Embedding of tokens
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Embedding of tokens

  ◦ Multiformer models longer range effects and field inter-
actions in a rich latent space

  › Embedding network provides rich encoding of input 
field

  › Embedding network allows for multi-resolution repre-
sentation per field, i.e. different token sizes
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Embedding of tokens

  ◦ Multiformer models longer range effects and field inter-
actions in a rich latent space

  › Embedding network provides rich encoding of input 
field

  › Embedding network allows for multi-resolution repre-
sentation per field, i.e. different token sizes

    

                 Use transformer as embedding network
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Embedding of tokens
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Embedding of tokens
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Embedding of tokens

CLS

embedding
transformer
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Embedding of tokens
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embedding
transformer

tail
network



142© Christian Lessig, 2023

Training

  ◦ Unbiased hierarchical Monte Carlo sampling of all possible 
ERA5 space-time cubes
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Training
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Training

09/200303/1984



145© Christian Lessig, 2023

Training

09/200303/1984



146© Christian Lessig, 2023

Training

09/200303/1984
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Training
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Training
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Statistical loss
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Statistical loss

  ◦ Statistical loss:
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Statistical loss

  ◦ Statistical loss:

  ◦ CRPS:1

1 S. Rasp and S. Lerch. Neural networks for postprocessing ensemble weather forecasts. Monthly Weather Review, 146(11):3885 – 3900, 2018.
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Statistical loss
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Statistical loss

Histogram
of ensemble
errors
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Zero shot evaluation

Embedding

CLS
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Zero shot evaluation
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Zero shot evaluation

Embedding-Forecast

CLS
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Zero shot evaluation

CLS

futurepast

Embedding-Forecast
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Zero shot evaluation

CLS

futurepast

Embedding-Forecast
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AtmoRep data
temperature
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AtmoRep data
geopotential
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AtmoRep data
vorticity
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AtmoRep data
divergence
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Spatio-temporal BERT
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Spatio-temporal BERT
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Spatio-temporal BERT
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Statistical loss
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Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Forecasting / projections

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need. In Advances in Neural In-
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Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.
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A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need. In Advances in Neural In-
formation Processing Systems, volume 30. Curran Associates, Inc., 2017.
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Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.
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formation Processing Systems, volume 30. Curran Associates, Inc., 2017.
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Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.
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formation Processing Systems, volume 30. Curran Associates, Inc., 2017.
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Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.
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Training

  ◦ Unbiased hierarchical Monte Carlo sampling of all possible 
ERA5 space-time cubes

  › Random sampling of (year,month) tuples corresponding 
to individual files

  › Random sampling of space-time cubes in tuples

  › Trivially parallelizable with one data loader per field

  ◦ Area preserving sampling for sphere/Earth to compensate 
for distortion of regular grid
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What is a token?

  ◦ Token is small neighborhood in space-time

  › Small for token attention / inter-
action to be informative

  › Big enough so token has rich  
internal strurcture
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What is a token?

  ◦ Token is small neighborhood in space-time

  › Small for token attention / inter-
action to be informative

  › Big enough so token has rich  
internal strurcture

  ◦ Token size is field-dependent



182© Christian Lessig, 2023

Multiformer

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP



183© Christian Lessig, 2023

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Self 
attention

Multiformer



184© Christian Lessig, 2023

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

vorticitySelf 
attention

Multiformer



185© Christian Lessig, 2023

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

divergence

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

vorticitySelf 
attention

Multiformer



Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

temperature

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

divergence

186© Christian Lessig, 2023

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

vorticitySelf 
attention

Multiformer



187© Christian Lessig, 2023

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

geopotential

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

temperature

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

divergence

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

vorticitySelf 
attention

Multiformer



188© Christian Lessig, 2023

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

geopotential

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

temperature

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

divergence

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

vorticitySelf 
attention

Multiformer



189© Christian Lessig, 2023

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

geopotential

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

temperature

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

divergence

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

vorticitySelf 
attention

Cross 
attention

Multiformer



190© Christian Lessig, 2023

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

geopotential

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

temperature

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

divergence

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

vorticitySelf 
attention

Cross 
attention

Multiformer



191© Christian Lessig, 2023

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

geopotential

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

temperature

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

divergence

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

vorticitySelf 
attention

Cross 
attention

Multiformer



192© Christian Lessig, 2023

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

CO2

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

geopotential

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

temperature

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

divergence

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

vorticitySelf 
attention

Cross 
attention

Multiformer



193© Christian Lessig, 2023

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

CO2

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

geopotential

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

temperature

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

divergence

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

vorticitySelf 
attention

Cross 
attention

Multiformer



194© Christian Lessig, 2023

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

CO2

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

geopotential

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

temperature

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

divergence

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

Se
lf-

A
tt

en
tio

n

M
LP

vorticitySelf 
attention

Cross 
attention

Multiformer



195© Christian Lessig, 2023

Data: ERA5 reanalysis

137 vertical 
layers

- vorticity
- divergence
- temperature
- geopotential
- ...

721x1440 horizontal grid (0.25 degree)

over 6 PB of data readily 
amenable to machine learning

hourly for 70 years
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Zero shot forecasting
Cape town: historgram of vorticity

ERA5
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Zero shot forecasting
Cape town: historgram of vorticity

ERA5 predictions


