Mathematical Tools for Computer Graphics 2017

Tutorial 5

In this tutorial we will consider an important application of the Riesz representation theorem. Specifically, we will study the point evaluation functional $\delta_x(\cdot)$ for function spaces where it is continuous. Such spaces are known as Reproducing Kernel Hilbert Spaces (RKHS) and they play a critical role for interpolation and integration.

- 1.) Apply the Riesz representation theorem to the point evaluation functional $\delta_{\bar{x}}(\cdot)$ assuming it is continuous in a Hilbert space \mathcal{H} .
- 2.) Consider the Hilbert space $\mathcal{H}^n_{\gamma}([0,1]) \subset L_2([0,1])$ given by

$$\mathcal{H}_{\chi}^{n}([0,1]) = \operatorname{span}\left(\left\{\chi_{i}(x)\right\}_{i=1}^{n}\right)$$

where $\chi_i(x)$ is the characteristic function

$$\chi_i(x) = \begin{cases}
1 & x \in [(i-1)/n, i/n) \\
0 & \text{otherwise}
\end{cases}$$

equipped with the standard L_2 inner product. Is the point evaluation functional for $\mathcal{H}_{\chi}^{n}([0,1])$ continuous?

- 3.) Let $\mathcal{H}(X)$ be a reproducing kernel Hilbert space, i.e. a Hilbert space where the point evaluation functional is continuous, and $\{\varphi_i\}_{i=1}^n$ an orthonormal basis for the space. Derive the basis expansion for the reproducing kernel $k_{\bar{x}}(x)$ with respect to $\{\varphi_i\}_{i=1}^n$.
- 4.) Using Numpy, construct a reproducing kernel $k_{\bar{x}}(x)$ for the space $P_5([-1,1])$ spanned by the first five Legendre polynomials (note that Legendre polynomials are a priori *not* orthonormal). Plot the reproducing kernel and verify the reproducing property numerically.
- 5.) The color of visible light is described by its spectrum, which is a function

$$f: [400 \text{ nm}, 700 \text{ nm}] \to \mathbb{R}$$

that describes the energy at each wavelength in [400 nm, 700 nm]. In computer graphics, the spectrum is typically represented by three discrete values f_r , f_g , f_b , which are associated with red, green, and blue, respectively. Can these three values reproduce f? If yes, how can this be accomplished?