
Interactive Separating Streak Surfaces

Florian Ferstl, Kai Bürger, Holger Theisel, and Rüdiger Westermann

Fig. 1. Our method generates streak surfaces revealing separating structures in unsteady 3D flow interactively on the GPU. Red
surfaces in the figures depict generalized streak surfaces emanating from 1D FTLE ridges on a planar seeding probe. Green particles
show points on time surfaces, which are additionally released from the seeding plane into the flow and serve as context information.

Abstract—Streak surfaces are among the most important features to support 3D unsteady flow exploration, but they are also among
the computationally most demanding. Furthermore, to enable a feature driven analysis of the flow, one is mainly interested in streak
surfaces that show separation profiles and thus detect unstable manifolds in the flow. The computation of such separation surfaces
requires to place seeding structures at the separation locations and to let the structures move correspondingly to these locations in
the unsteady flow. Since only little knowledge exists about the time evolution of separating streak surfaces, at this time, an automated
exploration of 3D unsteady flows using such surfaces is not feasible. Therefore, in this paper we present an interactive approach
for the visual analysis of separating streak surfaces. Our method draws upon recent work on the extraction of Lagrangian coherent
structures (LCS) and the real-time visualization of streak surfaces on the GPU. We propose an interactive technique for computing
ridges in the finite time Lyapunov exponent (FTLE) field at each time step, and we use these ridges as seeding structures to track
streak surfaces in the time-varying flow. By showing separation surfaces in combination with particle trajectories, and by letting the
user interactively change seeding parameters such as particle density and position, visually guided exploration of separation profiles
in 3D is provided. To the best of our knowledge, this is the first time that the reconstruction and display of semantic separable surfaces
in 3D unsteady flows can be performed interactively, giving rise to new possibilities for gaining insight into complex flow phenomena.

Index Terms—Unsteady flow visualization, feature extraction, streak surface generation, GPUs.

1 INTRODUCTION

For the visual analysis of flow data, feature extraction methods are
a well-established class of techniques because the extraction of fea-
tures offers insight into different flow phenomena while reducing
the amount of data to be processed. Another important and well-
established class of visualization algorithms are real-time interactive
exploration approaches, such as interactively seeding and tracking par-
ticles, characteristic lines, or integral surfaces. The increasing amount
and complexity of flow data brings limitations to both classes of tech-
niques: the features themselves may become so complex that their
visual representation becomes challenging. On the other hand, inter-
active exploration techniques suffer from the danger that important
phenomena are missed because certain areas are not explored. A so-
lution for this is a combination of feature extraction and interactive
exploration: either the extracted complex features are visualized by
appropriate real-time flow exploration tools, or the seeding in inter-
active flow exploration is controlled by a feature extraction approach.
In this paper, we propose such a combination for particular features
(ridges of FTLE fields) and interactive exploration tools (generalized

∙ F. Ferstl (E-mail: ferstlf@in.tum.de), K. Bürger (E-mail: buerger@tum.de)

and R. Westermann (E-mail: westermann@tum.de) are with the Computer

Graphics & Visualization group, Technische Universität München.

∙ Holger Theisel (E-mail: theisel@isg.cs.uni-magdeburg.de) is with the

Visual Computing group, University of Magdeburg.

Manuscript received 31 March 2010; accepted 1 August 2010; posted online

24 October 2010; mailed on 16 October 2010.

For information on obtaining reprints of this article, please send

email to: tvcg@computer.org.

streak surfaces).

Ridges of finite time Lyapunov exponent (FTLE) fields are well-
established features for computing separating structures in time-
dependent flows. While their definition is well-understood, for 3D
time-dependent flows their visualization is complicated because the
ridges of interest are 3D hypervolumes in the 4D space-time domain,
i.e., surface structures changing their shapes and appearance over time.
Because of this, existing algorithms in 3D carefully focus on particu-
lar times and locations to show ridge surfaces, making a systematic
exploration of all FTLE ridges in 3D time-dependent flows a time-
consuming process.

Streak surface extraction is a prominent tool for interactive flow
exploration. Since for every location in the space-time domain there
is a one-parametric family of streak lines passing through, the sheer
amount of existing streak lines (and therefore streak surfaces as well)
leave the chance of missing interesting and important streak surfaces.

The approach presented in this paper aims in overcoming the draw-
backs of both FTLE ridges and interactive streak surface exploration.
It is justified by the following observation: FTLE ridges are approx-
imately material structures [11, 44] and can therefore be interpreted
as generalized streak surfaces (for 2D flows, [33] exploit this fact by
considering the intersection of forward and reverse-time FTLE LCS).

We use this for the following algorithm: given a 3D time-dependent
flow field, we interactively place and move a planar seeding structure
s (usually a rectangle) in the flow domain at a certain time t. Note that
moving the seeding structure s is possible both in space and time. We
consider the restriction of the FTLE field on s (i.e., a 2D field), either
by computing the FTLE values on s in-turn or by computing the entire
FTLE field (i.e., a 4D scalar field) in a preprocess and resampling the
values onto s via interpolation. We then extract ridge structures in the

FTLE field on s in real-time, and employ them as seeding structures
for a streak surface integration. Since the ridges on s change their
shape by moving s in space and time, the surfaces generated this way
are generalized streak surfaces (an extension of the concept of gener-
alized streak lines [52]). The streak surfaces are shown only for the
integration time which was used for computing the FTLE, since only
for this integration time a separation was detected. As our choice of
seeding locations for streak surface integration aims to uncover sepa-
ration structures, we will refer to them as separating streak surfaces in
the following.

Our method exploits the fact that 2D FTLE ridges (LCS) in 3-space
are advected in a similar way to streak surfaces seeded at 1D FTLE
ridges on a 2D manifold in 3-space. This statement is based on two
facts: firstly, the 1D FTLE ridges on the seeding plane are approxi-
mately on 2D ridges in 3-space as long as the seeding plane is approx-
imately perpendicular to the flow (this was exploited in [7], where
ridges on cutting planes are considered instead of 2D ridges). Sec-
ondly, FTLE ridges are approximately material structures and do in
fact converge to exact material structures if the integration time goes
to infinity [44].

In [32] and [23] this temporal coherence of LCS was exploited to
efficiently compute time series of FTLE ridges via simultaneous ad-
vection of a sampling grid and incremental 1D ridge tracking, respec-
tively. Since a finite integration time is used in our work, the general-
ized streak surfaces we extract do not coincide with 2D FTLE ridges
in general. However, we will demonstrate in this work that these sur-
faces resemble the 2D ridges at high fidelity and can be computed
very efficiently. Furthermore, since generalized streak surfaces move
according to the flow they provide a more intuitive flow exploration
metaphor than 2D FTLE ridges. Notably, no visual information will
be generated in regions where many 2D ridges exist but for none of
them an approximating streak surface has its origin on the selected
seeding structure. This allows using our approach as an effective tech-
nique to focus on particular flow structures in space and time.

Our contributions: In this work we present the first approach to
construct separating streak surfaces in 3D unsteady flows at interac-
tive rates. This enables visually guided 3D flow exploration based
on the concept of LCS. Our approach distinguishes from previous ap-
proaches in that it avoids computing LCS in 3D. Instead, the computa-
tion is restricted to a 2D manifold and streak surfaces are constructed
at significantly less computational effort. All processing stages of the
proposed algorithm are realized on the GPU, including FTLE com-
putation, ridge extraction, streak surface reconstruction, and surface
rendering. The specific contributions of our work are:

∙ A navigation tool that allows placing a 2D sampling grid in
space-time and computing FTLE values on it in an interactive
way.

∙ A new ridge extraction method that is specifically tailored to the
GPU and produces ridges well-suited as seeding structures.

∙ A new method for the reconstruction and rendering of high-
quality streak surfaces emanating from 1D FTLE ridges.

The remainder of this paper is organized as follows: After review-
ing previous work that is related to ours, Section 3 is dedicated to
the spatial selection of separating streak surfaces based on the FTLE.
In Section 4 we introduce our new ridge extraction algorithm. The
reconstruction of streak surfaces from extracted 1D FTLE ridges is
described in Section 5. Section 6 presents a detailed analysis of our
approach with respect to performance and quality. We conclude the
paper with some thoughts on future work.

2 RELATED WORK

Our approach is based on a number of established techniques in visu-
alization, namely FTLE computation, ridge extraction, streak surface
integration, and interactive flow exploration. A thorough overview of
feature extraction techniques in flow visualization and geometric flow
visualization techniques can be found in [28] and [24], respectively.

FTLE

Lagrangian coherent structures as ridges of FTLE fields were intro-
duced by Haller [11, 13] and experienced an intensive research since
then [21, 12, 45, 51]. Shadden [44] has shown that ridges of FTLE are
approximate material structures, i.e., they converge to material struc-
tures for increasing integration times. This fact was used in [33] to
extract topology-like structures and in [23] and [30, 7] to accelerate
the FTLE computation in 2D and 3D flows.

In the visualization community, different approaches have been pro-
posed to increase the performance, accuracy and usefulness of FTLE
as a visualization tool. For example, volume rendering and slicing
techniques were used for a visual analysis of 3D FTLE fields in [9, 7],
[31] proposed to extract LCS as filtered height ridges and compared
LCS- and topology-based flow visualizations and [3, 7] considered
the FTLE to control the visualization of particles to show divergent
regions in 3D flows. None of them is designed for a real-time explo-
ration of the separating structures in 3D space and time.

Ridge Extraction

To extract ridge structures, a variety of different approaches has been
proposed in the literature. We mention local conditions by relax-
ing conditions of extremal structures [5, 22], topological/watershed
approaches [34], definitions based on extremal curvature structures,
adaptive methods [30], or particle based methods [17]. [27, 43] focus
on the extraction of ridge surfaces in 3D fields. To the best of our
knowledge, none of these approaches aims in a real-time extraction of
ridge structures in time-varying fields.

Streak Surfaces

Streak surfaces have recently moved into the focus of flow visualiza-
tion. [50] introduced non-adaptive smoke surfaces in an attempt to
mimic the appearance of real-world flow structures. [19] presented
remeshing techniques and conditions to get high-quality streak sur-
faces for flow fields on irregular grids without real-time constraints.
[2] proposed interactive GPU based visualizations of streak surfaces
for flow fields on regular grids. [52] introduced generalized streak
lines which are obtained by moving the seeding point according to the
zeros of the flow on a boundary surface. In addition, there exists a
variety of approaches for the integration of stream and path surfaces
[15, 48, 38, 49, 42, 36, 8].

Interactive Flow Exploration

Interactive flow exploration heavily relies on interactive frame rates
and is therefore often concerned with efficient solutions on graphics
hardware. On recent GPUs it is now possible to interactively trace
millions of particles in Cartesian grids using higher order integration
schemes [40, 46, 20, 4], and to instantly render these particles using a
multitude of different options including oriented point sprites, lines,
and more complex geometric representations like bands and tubes
[10, 41, 18, 25]. For a detailed description of an efficient GPU imple-
mentation of particle tracing in tetrahedral meshes we refer the reader
to the work by Schirski and Kuhlen [39].

3 FTLE

Our approach for visualizing separating streak surfaces is based on
seeding particles along Lagrangian coherent structures (LCS) in a 3D
unsteady flow field. Since LCS are formed by ridges in the finite time
Lyapunov exponent (FTLE) field, the FTLE first has to be computed
before meaningful seeding structures can be found.

The FTLE is a scalar quantity that measures the stretching induced
by the flow. Let φT

t0
(x) denote the flow map that defines the mapping of

particles at position x in space and t0 in time via path line integration
over the time interval T . According to [11] the FTLE is then defined
as

σT
t0
(x) =

1

∣T ∣
ln

√

λmax

(

(∇φT
t0
(x))⊤ ⋅∇φT

t0
(x)

)

where λmax is the largest eigenvalue of the right Cauchy-Green defor-

mation tensor (∇φT
t0
(x))⊤ ⋅ ∇φT

t0
(x) of the flow map. Intuitively the

FTLE can also be seen as a value derived from the spectral norm of
the flow map gradient, describing the maximum rate of separation of
infinitesimally closely seeded particles.

In this work we compute the flow map, and the FTLE derived
thereof, by sampling particles on a planar seeding structure s, which
is discretized by a uniform 2D sampling grid. For estimating the flow
deformation in the vicinity of one of these particles, however, we con-
sider additional particles that are seeded within an ε-region around it.
Following [16], we have chosen ε according to the grid spacing in all
of our examples.

The FTLE computation, and thus the following ridge extraction, is
restricted to a sub-domain of the 3D flow domain. The user is provided
a navigation tool to place s in the 3D field. Both the size and the reso-
lution of the sampling grid can be set by the user. At the center of each
grid cell the FTLE value is computed as described above. Specifically,
if a center is at position (x,y,z), the trajectories of 6 particles seeded at
positions (x± ε,y± ε,z± ε) are traced and the deformation gradient
is computed from the particle destinations. Particle tracing and FTLE
computation is entirely performed on the GPU, and the resulting val-
ues are written into a 2D texture.

It should be noted that the FTLE computation we perform can gen-
erate less reliable results, since the particles can separate significantly
during path line integration. Even though there exist approaches to
overcome this problem, e.g. by a FTLE redefinition to local criteria on
the center trajectory [16] or renormalization of the particle neighbor-
hood [1], we have not yet integrated these approaches into our method.

Figure 2 shows two snapshots of an exploration session in which
FTLE values have been computed on different sampling grids. In both
cases the computation was performed at a grid size of 256×256 with
an integration time of 0.15 s (100 Runge-Kutta 4th order integration
steps, requiring 20 time steps of the unsteady flow field). Since the
computation is performed on the GPU, interactive update rates of less
than 150 ms are achieved as long as all time steps can be stored in the
GPU memory.

Fig. 2. Two FTLE fields on a planar probe at grid size 256×256. The par-
allelized FTLE computation on the GPU yields interactive update rates
(less than 150 ms for the given probe texture resolution).

This indicates that often it is not necessary to pre-compute the 3D
FTLE field. The values can be updated in-turn once the user moves s
or changes any of the parameters the FTLE depends upon, like the start
time t0, the integration time T , the spatial sampling distance ε , or the
size and resolution of the sampling grid. However, in scenarios where
the time-resolved flow field sequence does not fit into GPU memory,
pre-computing the time-dependent FTLE should be preferred. In this
case the pre-computed FTLE values can simply be interpolated at the
grid cell centers. Note that in this case the FTLE parameters are fixed
and, therefore, ε might significantly differ from the grid spacing on s.

4 FTLE RIDGE EXTRACTION

In the following we describe our novel extraction technique for 1D
ridges in 2D FTLE fields. Ridge extraction techniques—also in the
context of LCS extraction—have been studied extensively over the
last years. There is a vast body of literature related to this field and
a comprehensive review is beyond the scope of this paper. However,
Eberly [5], Haralick [14], and Peikert and Sadlo [27] discuss the ba-
sic principles underlying such techniques as well as the different ridge

types that exist, and they provide many useful algorithmic and imple-
mentation specific details.

Our ridge extraction technique builds upon the concepts of height
ridges and watersheds. The definition of height ridges involves point-
wise evaluations of algebraic equations based on geometric ridge prop-
erties, which are expressed via first-order derivatives and derivatives
into the main curvature directions, i.e., the (transversal) ridge direc-
tions [5]. Let f (p) denote the FTLE value at a point p on s, and let
H and g denote the Hessian matrix and the gradient of f , respectively.
According to [27] the height ridges are a subset of the zero-contour
of det(Hg,g) = 0, which can be extracted in 2D using the marching
squares algorithm.

In general, unfiltered height ridges do not provide suitable seeding
regions for streak surfaces. Even though height ridges cannot really
branch as shown in [43], they tend to appear as branched structures
at larger scales. Highly branched and fragmented structures, however,
result in many separate and even non-manifold surface parts. From a
visualization point of view, the streak surfaces constructed from such
ridges do not allow any intuitive interpretation due to their complex
topology and visual clutter thereof. Figure 3 shows a set of unfiltered
FTLE height ridges (top) and compares them to the ridges we are in-
terested in (bottom). Even though height ridges can be post-processed
to eliminate undesirable ridge parts and thus to yield simpler seeding
structures [30], it seems to be difficult to implement this process effi-
ciently on the GPU.

Fig. 3. Top: unfiltered height ridges; Bottom: ridges extracted by our
approach.

Watersheds [29] are another popular approach for ridge extraction in
2D. It is based on the topology of the underlying 2D scalar field and
aims at extracting slopelines separating hills and basins. In this defini-
tion a ridge is considered a slopeline going from one maximum to
another maximum through a single saddle point. Even though the
topology of watershed ridges is often much simpler than that of height
ridges, they nevertheless fail to focus on the main axis of hills of the
height field. Using a general watershed approach can also lead to
rather cumbersome special cases in which significant ridges are missed
because they do not separate different minima correctly.

To overcome the limitations of height ridges and watersheds we
introduce a novel ridge extraction algorithm. Generally speaking, a
ridge is a graph G = (V,E) consisting of a set V of vertices and a set
E of edges. Vertices v ∈V can be end points (deg(v) = 1), line points
(deg(v) = 2) or crossings (deg(v)> 2). With respect to this definition,
for our purpose the specific goals are a) to minimize the number of
crossings per ridge, and thus to avoid non-manifold surfaces, and b) to
maximize the ridge length, i.e. to connect as many vertices as possible,
and thus to prevent the streak surfaces from falling into many parts.

Fig. 4. Steps of the ridge extraction algorithm. (a) A planar probe positioned in the flow domain, and the corresponding color coded FTLE scalar
field. (b) Threshold regions. (c) Thinning yields the pixel-accurate ridge skeleton. (d) Extracted ridge line segments at sub-pixel accuracy.

The basic idea underlying our algorithm is to separate the extraction of
the ridge topology from the computation of the exact ridge locations,
similar to the concept proposed in [37]. Starting with the FTLE field in
a 2D texture in GPU memory, the texture is first filtered via a gaussian
kernel of size 5 × 5 to smooth high-frequency FTLE regions (typi-
cally, 5− 10 smoothing iterations are performed). Then, the texture
is processed to classify the FTLE values and build threshold regions.
These regions are successively thinned to compute a pixel-accurate
ridge skeleton, from which ridge line segments are extracted at sub-
pixel accuracy. The different steps of this algorithm are illustrated in
Figure 4.

The result of our technique are continuous ridges with a simple
topology. They consist of points that are local maxima into the direc-
tion of the local ridge normals, similar to the concept of watersheds.
These ridges are returned as a common graph structure G with uniform
vertex spacing.

4.1 Ridge Topology

The extraction of the ridge topology is performed by first classifying
the discrete set of FTLE values on the sampling grid based on the
height and the local curvature of this field, and then by shrinking the
resulting regions towards the ridge skeletons. If a sufficient symmetry
of the hills in the height field along their main axis can be assumed,
the skeleton will roughly coincide with valid ridge locations.

4.1.1 Classification

Performing the classification of FTLE values based on a height thresh-
old is not sufficient in general, since ridges can be of different heights.
This classification also fails to segment regions of nearby ridges that
are separated by valleys of insufficient depth. To solve this problem
we introduce an additional threshold that is used to separate convex
and non-convex FTLE regions.

Let fww be the second order directional derivative of f (p) into di-
rection w at a fixed position p. Moreover let λ1,λ2 (with λ1 ≤ λ2) be
the eigenvalues of H at p. The point p is a convex point if every second
order directional derivative is non-positive: ∀w ∕= 0 : fww ≤ 0. Since
λ1 ≤ fww ≤ λ2 holds for any arbitrary ∣w∣= 1, p is convex if and only
if H is negative semi-definite. This results in the following condition
to be fulfilled by every ridge point:

λ2 ≤ 0

Applying this criterion to every sample on the seeding structure s gives
the desired classification into points belonging to convex regions and
points belonging to non-convex regions. For this we calculate the Hes-
sian pixel-wise using discrete filters on the smoothed FTLE field f
on s.

The used criterion, on the other hand, is rather sensitive against
small but random fluctuations and thus leads to a rather noisy classifi-
cation in approximately planar regions. This misclassification, which
results in unfeasible skeletons, is resolved by allowing small positive
values of λ2, i.e., a curvature threshold κ > 0. Combined with a height
threshold h to exclude ridges at locations where the FTLE value is too

low we arrive at the condition

λ2 ≤ κ ∧ f (p)≥ h . (1)

The reason for making the condition dependent on λ2 rather than λ1

is that in practice this condition turns out to be much more capable of
reducing the ridges’ fuzziness.

Figure 5 shows FTLE classifications using the different criteria with
varying threshold values. As can be seen, vastly different results are
obtained, ranging from rather fuzzy to well-defined and smooth thresh-
old regions. According to our experience, choosing κ one or two or-
ders smaller than the largest occurring curvatures on s provides the
best results, i.e. κ ∈ [0.01;0.1] ⋅ maxs{∣λ1∣, ∣λ2∣}. For the minimal
ridge height h, reasonable values are between 50% and 80% of the
maximum FTLE value.

Fig. 5. Classification of FTLE values into convex (red) and non-convex
(blue) regions, using a) height threshold, b) height and curvature thresh-
old with κ = 0 and c) with κ = 10−3.

4.1.2 Skeletonization via Curve-Thinning

Applying the convexity test (1) to the FTLE field results in a binary
threshold image. We assume that pixels labeled 1 passed the test,
while all others are labeled 0. We are now seeking for the topolog-
ical skeletons of those regions consisting of pixels that passed the test,
i.e., the skeletons of the convex regions.

To compute these skeletons efficiently on the GPU we employ a 2D
version of the region thinning algorithm proposed by [26]. The algo-
rithm is very robust against noise at the region boundaries, and since
it performs purely local computations at every pixel it can be paral-
lelized effectively. Furthermore, it directly generates the inner skele-
ton of a region, meaning that the algorithm avoids branches touch-
ing the region contour. At every pixel the algorithm considers the
4-neighborhood to classify this pixel, i.e., a pixel is classified as N-
(or W-, E-, S-) border-pixel if it has value 1 and its neighbor in the
respective direction has value 0:

N

W ∙ E

S

In every iteration, at every pixel four sub-iterations are performed
to remove certain border pixels. The first sub-iteration NW removes

N- and W- border-pixels that match at least one of the following three
adjacency templates:

0 0 0

x 1 x

x 1 x

∨
0 x x

0 1 1

0 x x

∨
0 0 ⋅
0 1 1

⋅ 1 ⋅

Here ’0’ and ’1’ mark pixels that have to be exactly matched. Of the
neighbors marked ’x’, per template at least one has to be ’1’ while
those marked with ’⋅’ are irrelevant for the evaluation of the respective
template. Upon finishing this sub-iteration, the algorithm proceeds
with sub-iterations SE, NE, and SW in exactly this order. The tem-
plates for these sub-iterations are derived by rotating the templates
used in the first sub-iteration accordingly. The thinning process is per-
formed in as many iterations as are required until no more pixels are
removed from the input image (typically a maximum of 20 iterations
is sufficient).

4.2 Sub-pixel Ridge Refinement

Given the set of skeleton pixels that is output by the thinning algo-
rithm, we construct a graph representation of the skeletons by con-
necting neighboring pixels. For every skeleton pixel with at least one
neighbor a vertex at its center is created. Two vertices are connected
via an edge if they belong to horizontally or vertically adjacent pixels
(N,W,S, or E template positions) or if they belong to diagonally ad-
jacent pixels which do not share a common neighbor. Note that this
implies deg(v)≤ 4 for all ridge vertices v.

The graph is stored on the GPU as a linear array of vertex primi-
tives, each carrying a pixel coordinate pv in the sampling grid s and
an adjacency list Uv ⊂ V with 1 ≤ ∣Uv∣ ≤ 4 implemented as point-
ers (indices) to up to 4 neighbors. The array is created by invoking
a geometry shader for every texel in the 2D texture storing the FTLE
values. Using the stream output functionality of current GPUs, we can
generate primitives solely for the pixels who are part of the skeleton.
To establish the connectivity between these vertex primitives, in a sec-
ond rendering pass, we scatter their array indices back into an index
texture of the same dimensions as the initial texture. In a third pass
every vertex finally determines the connectivity information U by a
lookup into the index texture.

The ridge graph is then refined iteratively at sub-pixel precision.
Underlying the refinement process is the condition that every ridge
vertex v should be lying on a maximum of the image function f into
the direction of the local ridge normal nv. Consequently, the ridge ver-
tices have to be moved upwards the FTLE field until they reach such
a maximum. Since moving vertices along the image gradient g would
cause the ridge graph G to be heavily distorted or even collapse at the
absolute maxima of f , we restrict the movement to the nv-direction
by projecting g onto nv. This also ensures the convergence of the re-
finement process under the assumption of a reasonable initial guess
produced by the skeletonization. To avoid degenerate cases and to ad-
ditionally obtain evenly spaced vertices, we incorporate some smooth-
ing into each refinement step by interpolating vertex positions along
ridge lines. Specifically, the position pv of a vertex v is updated ac-
cording to

pv
′ =

⎧

⎨

⎩

pv +δ rv , if ∣Uv∣= 1

(1−σ) pv +
σ
∣Uv∣

(

∑
u∈Uv

pu

)

+δ rv , else
(2)

with

rv =

⎧

⎨

⎩

⟨(pu1
−pu2

)⊥,g⟩ ⋅ (pu1
−pu2

)⊥ , if Uv = {u1,u2}

∑
u∈Uv

⟨(pu −pv)
⊥,g⟩ ⋅ (pu −pv)

⊥ , else

Here, δ is the step-size along the gradient, σ is the amount of line

smoothing, and w⊥ denotes a unit-length vector perpendicular to w.
In order to allow for the procedure to converge, we choose the largest
δ for which the step size ∣δ rv∣ is smaller than one pixel. σ was set to
0.25.

We perform a fixed number of iteration steps (typically 50), which
are computed for every vertex in parallel on the GPU. In a final post-
process the graph G is modified by removing vertices that have moved
more than a user-specified distance threshold dmax during the refine-
ment (by default we set dmax to the length of 5 pixels). In this way we
eliminate skeletons that were too far from ridges after the initial skele-
tonization. Therefore, each vertex v gets assigned an additional at-
tribute dv, which stores the distance a vertex has been moved. Similar
to pv, dv is smoothed along ridge lines to prevent oscillation artifacts
caused by thresholding:

d′
v =

{

(1−ω) dv +
ω
∣Uv∣

(∑
u∈Uv

du)+ ∣pv
′−pv∣ , if ∣Uv∣ ≤ 2

dv + ∣pv
′−pv∣ , else

(3)

Compared to σ , ω should be chosen significantly smaller. For in-
stance, ω = 0.05 was used throughout all of our experiments. Vertices
with dv > dmax are marked invalid. Finally this mark is propagated
through G in kcut iterations, marking all vertices invalid from which an
invalid vertex can be reached in kcut steps. kcut was set to 5 throughout
all experiments. In Figure 6 extracted ridges before (left) and after the
sub-pixel refinement stage are shown.

The result of the ridge extraction stage is the array of ridge vertices
containing both the invalid and the valid ridge vertices V+ ⊆V . From
these vertices the set of valid edges E+ ⊆V+×V+ is derived.

Fig. 6. Ridges extracted with our approach. a) Ridges obtained by
connecting adjacent vertices. b) Sub-pixel precise ridges after the re-
finement and post-processing stage.

5 SEPARATING STREAK-SURFACE VISUALIZATION

Our ridge extraction technique yields a set of ridge structures for a
given point in time. These structures are used as seeding curves for
streak surfaces. Since the seeding structures change over time, the
surfaces generated this way are generalized streak surfaces.

The ridges are provided as a set of uniformly distributed line seg-
ments E+ consisting of a discrete set of control vertices V+. To con-
struct separation surfaces, we repeatedly release particles from the set
of seed points V+ into the flow and compute their trajectories in the
unsteady 3D flow. All particles released at a given point in time are
then integrated and rendered. Since the FTLE values have been com-
puted by integrating particles over a specific time interval, the life time
of the particles seeded at the FTLE ridges is restricted to the same in-
terval.

Figures 7 and 9 (c) show separating streak surfaces that were vi-
sualized by rendering the set of particles as individual spherical point
sprites. As proposed by Sigg et al. [47], an analytic ray/sphere in-
tersection is performed in the pixel shader stage to determine correct
depth values on a per fragment basis. Numerical particle integration
on the GPU is performed as described in [20].

Red particles in the images correspond to control points on a sep-
arating streak surface. We optionally adapt the opacity of particles
representing a separating streak surface according to the scalar FTLE
value at their current position in space and time, thus, fading out prim-
itives that are passing through regions of low FTLE. Green particles

represent control points of time surfaces. Those time surfaces are
aligned parallel to the planar probe and released into the flow at a fixed
frequency to serve as additional context information, emphasizing the
separating nature of the extracted streak surfaces. Approximating the
surface through a set of individual samples allows us to use large sets
of particles at real-time performance. However, as particles start to di-
verge, missing connectivity between surface samples and the omission
of an adaptive refinement make it difficult to identify the separating
surface.

Fig. 7. Particle based surface visualization. Red particles correspond to
points on the separating surface. Green particles serve as context infor-
mation. They correspond to points on time surfaces, which are released
from the planar probe at a fixed frequency.

In [2] two different approaches for the visualization of closed streak
surfaces were proposed, with the focus on the efficient construction of
such surfaces on the GPU. The first approach represents the surface
as a set of separate quad-patches, which deform under the influence
of the flow. Each patch is traced separately through the flow, and it is
adaptively refined into a set of sub-patches if the stretching becomes
too severe. The refinement process introduces new vertices that are not
shared by adjacent patches, and, thus, successive integration can lead
to holes in the surface representation. The second approach generates
a closed surface by repeatedly releasing time lines from a single static
seeding structure and triangulating adjacent (adaptively refined) time-
lines.

Unfortunately, the latter approach can not easily be applied in our
scenario since the seeding curve changes permanently. This makes it
difficult to establish particle connectivity and construct a consistent
surface triangulation. Especially since the topology of the seeding
curves changes from time step to time step, we would first have to
determine matching curve segments in successive time steps to build
a triangulation. Finding these matchings is a rather time consuming
task and can not efficiently be mapped to the GPU. For this reason we
adopt a variant of the patch-based approach from [2] in this work.

In each time step ti and for every edge e ∈ E+ we construct a zero
area quad, and we release two control vertices of each patch into the
flow. Before releasing the remaining two vertices in time step ti+1, the
ridge line segments E+ extracted in ti are traced along the gradient of
the 2D FTLE field at ti+1 as described in section 4.2. Thus, the vertices
are moved according to the movement of the ridge structure from one
time step to the next. In this way we employ the temporal coherence
of FTLE ridges to find for each ridge vertex a corresponding vertex in
the next time step. The remaining two patch vertices are then released
into the flow from the new positions on the seeding plane.

As the adjusted edges E+
i (extracted at ti) do not exactly match the

edges E+
i+1, subsequent integration can lead to holes in the surface

representation. This is fixed to a certain degree by using point splat-
ting, which renders a slightly enlarged footprint to smear out holes
between adjacent patches. Figure 8 sketches the construction of sur-
face patches for a seeding structure that moves over time. Adaptive
patch refinement is performed as proposed in [2]. Figures 1 and 12
show separating streak surfaces that have been constructed and visu-
alized using our approach. In Figures 11 and 9 (a,b) depth peeling

was applied to create a semi transparent visualization of the separating
streak surfaces.

t
i t

i t
i+1

Advect Refine

Fig. 8. Patch-based surface visualization. Before releasing the second
pair of vertices at time ti+1, the line segment of the corresponding ridge
structure extracted at time ti is traced along the FTLE gradient field gi+1.
The four white vertices (right) depict the control points of the resulting
quadrilateral.

6 RESULTS AND DISCUSSION

To validate the effectiveness of the proposed techniques, we have con-
ducted a number of experiments on different data sets given on 3D
Cartesian grids. Performance statistics were measured on a 2.83 GHz
Core 2 Quad processor, equipped with a NVIDIA Quadro FX5800
with 4 GB local video memory. Results were rendered into a view-
port at FullHD resolution (1920×1080). The following data sets were
used:

∙ 3D double gyre: A 3D extension of the synthetic, periodic 2D
double gyre [44], sampled at a spatial resolution of 256×128×
256 and a temporal resolution of 10 for one period:

gyre(x,y,z, t) = (−πA ⋅ sin(π f (x, t +5z)) ⋅ cos(πy),

πA ⋅ cos(π f (x, t +5z)) ⋅ sin(πy) ⋅
d f

dx
, 0) with

f (x, t) = a(t)x2 +b(t) x, a(t) = εsin(ωt), b(t) = 1−2εsin(ωt),

A = 0.1, ε = 0.25, ω = 2π
10 and

(x,y,z, t) ∈ [0;2]× [0;1]× [0;2]× [0;10)

∙ Square cylinder: A DNS simulation of the three-dimensional
flow around a square cylinder between parallel walls [35]. The
vector field was resampled onto a uniform grid at resolution
192×64×48. 102 time-steps were used. The scalar FTLE fields
were pre-computed at fourfold the spatial and eightfold the tem-
poral resolution.

∙ Flow around a cylinder: A large eddy simulation of an incom-
pressible unsteady turbulent flow around a wall-mounted cylin-
der [6]. 22 time-steps were simulated. The size of the data grid
is 256× 128× 128. Pre-computed FTLE fields were generated
at twice the spatial, and fourfold the temporal resolution.

∙ LBM Flow: A Lattice-Boltzmann simulation of the flow around
a donut-shaped obstacle. The spatial resolution of the simulation
domain is 128× 64× 64. The FTLE fields on the 2D sampling
grid were computed on the fly during flow exploration. In every
time step, 10 vector fields were used in advance to compute the
FTLE values.

6.1 Visual Exploration

3D double gyre: Placing the seeding plane parallel to the (x,y) plane
essentially means to compute the FTLE ridges on the classical 2D dou-
ble gyre. Our extraction shows that the obtained ridges agree with ex-
pected ridges known from the literature, with the main difference that
our extraction works in real-time. Seeding streak surfaces from the

Fig. 9. (a) A tube shaped transparent streak surface around a torus, separating the flow passing through the hole and around the obstacle.
(b) Moving the planar probe closer to the object reveals two individual surfaces denoting a separation behind it. (c) Placing the planar probe
perpendicular to the inflow in front of the cylinder reveals two separating surfaces enclosing the object. Note that the rendering artifacts in (c) are a
result of the particle based visualization approach.

Fig. 10. Correspondence between separating streak surfaces and FTLE
ridges. Besides the seeding plane, a second plane is placed such that
it intersects the surface and FTLE values are visualized on it. Left: The
separating surface stays on the 2D FTLE ridges. Right: In general,
since the integration time used to compute the FTLE is finite, the surface
keeps staying in regions of high FTLE but does not stay on the 2D FTLE
ridges any more.

ridges confirms that the ridges are approximate material structures: the
generalized streak surfaces and the ridges show a good coincidence as
depicted in Figure 10 (left).

Placing the seeding plane parallel to the (x,z) plane reveals approx-
imate sine shaped ridge structures (see Figure 1 (right)). Note that this
curve does not coincide with moving saddle of the vector field which
is a well-known characteristic property of the data set [44].

Furthermore, the plane can interactively be moved, yielding sepa-
rating generalized streak surfaces (see accompanying video).

Fig. 11. Separating streak surfaces in the double gyre data set. Individ-
ual surface layers are extracted via depth peeling. Green arrows show
the velocity direction on time surfaces that are additionally released from
the planar probe.

Square cylinder: Seeding from a plane in front of the cylinder with a
distance according to the integration time to compute the FTLE field
reveals one distinct streak surface separating the flow passing above
and below the cylinder (see Figure 12). Moving the seeding plane
closer towards the cylinder makes more separation surfaces parallel to

the first one appear. They denote a separation occurring behind the
cylinder.

Fig. 12. A separating streak surface (red) in the square cylinder data
set, visualized using a patch-based approach.

Placing the seeding plane behind the cylinder perpendicular to the
main flow direction shows periodically appearing and disappearing
streak surfaces which alternate in moving upward and downward. This
confirms the appearance of the well-known von Karman vortex street
behind the cylinder. In order to show that the streak surfaces are in-
deed separating structures, we release time surfaces from the seeding
plane at times when streak surfaces are released. The time surfaces
get advected and clearly get distorted mostly around the intersections
with the streak surfaces. As can be seen in Figures 1 (middle) and 7,
this shows the separating structure of our streak surfaces.

LBM Flow: A tube shaped generalized streak surface is revealed by
placing the seeding plane in front of the torus, separating the flow
passing through the hole and around the toroidal obstacle.

Moving s closer towards the obstacle creates two surfaces parallel
to the first one, indicating the occurrence of a separation behind the
torus (see Figure 9 (b)).

Flow around a cylinder: Two streak surfaces enclosing the cylindri-
cal obstacle are revealed by placing the seeding probe perpendicular
to the inflow in front of the object. The extracted surfaces emanat-
ing from 1D FTLE ridges on the planar probe—as shown in Figures 1
(left) and 9 (c) — closely resemble the 2D FTLE ridges obtained by
incremental ridge tracking in a similar data set [32]. Notably the sep-
arating streak surface is in strong accordance with the LCS in this
data set.

6.2 Performance

We applied an explicit fourth-order Runge-Kutta scheme at single
floating point precision for numerical particle integration during FTLE
(pre-)computation as well as for the integration of streak surfaces.

Performance measures for FTLE pre-computation are presented in
Table 2. Representative timings in hours (h) are given in column Time

Seed Sampling texture FTLE FTLE Ridge # Quads + Adv + Vis
Interval resolution Setup Time extraction Particles per Frame FPS
25ms 250 × 250 - - 6.9ms 108k 13.2ms ∙ 32.0
50ms 500 × 500 - - 15.2ms 639k 80.0ms □ 7.3
50ms 400 × 800 - - 25.7ms 100k 10.7ms ∙ 24.4
100ms 250 × 250 10s in 50 steps 58.6ms 10.5ms 57k 6.7ms ∙ 18.1
100ms 250 × 250 15s in 100 steps 120ms 9.2ms 42k 11ms □ 3.3
100ms 400 × 800 10s in 50 steps 277ms 23.0ms 200k 16.7ms ∙ 1.6

Table 1. Performance statistics for the extraction and visualization of separating streak surfaces. The surfaces were visualized using either the
particle based approach (entries marked ∙), or the patch-based approach (marked □) including adaptive surface refinement.

for varying temporal (Timesteps) and spatial (SpatialRes) FTLE res-
olutions. Column Integration contains the integration time T and the
amount of integration steps.

Timesteps SpatialRes Integration Time

80 256 × 256 × 128 8s in 50 steps 0.8h

576 384 × 128 × 96 10s in 100 steps 5.0h

576 768 × 256 × 192 10s in 100 steps 43h

Table 2. Performance statistics for GPU-based FTLE computation.

Timings for the ridge extraction on the planar probe as well as for
the streak surface generation and visualization are given in Table 1.
We extract seeding structures (FTLE calculations and ridge extrac-
tion) at a fixed temporal frequency (Seed Interval) on the planar probe
s with varying texture resolutions (Sampling texture resolution). In
cases where the FTLE was calculated interactively, columns FTLE
Setup and FTLE Time show the used parameters and the respective
calculation time, whereas resampling the precalculated FTLE using
trilinear interpolation comes at negligible cost. Timings for FTLE
thresholding, curve thinning and ridge refinement are summarized in
column Ridge extraction. Column #Quads+Particles shows the aver-
age amount of primitives employed to visualize the separating streak
surfaces and additional context information, column Adv+Vis the time
spent for respective particle integration and rendering. Column FPS
contains the average achieved frame rate during the interactive flow
exploration sessions.

6.3 Limitations

For the visual exploration of turbulent flows the proposed technique
seems problematic. As can be seen in Figure 13, when placing s in
turbulent flow regions the FTLE exhibits rather fuzzy ridge structures
undergoing frequent topology changes. Hence, many small, discon-
nected, and strongly moving surface parts will be generated, leading
to visual clutter. Reducing the FTLE integration time T as proposed
by [33] to simplify the “Lagrangian skeleton“ can only be done to a
certain extent, as the surface integration time is restricted to T .

The application of the curvature criterion (1) followed by skele-
tonization especially aims to simplify the extracted ridges. It is clear,
on the other hand, that this can change the ridge topology, e.g. by re-
moving non-shallow saddles, or lead to slightly misplaced ridges, i.e.,
at crossings. Therefore, care has to be taken to not “misinterpret“ the
resulting ridges.

Fig. 13. Placing the seeding probe in turbulent regions. Frequent move-
ments and topology changes of ridges result in highly fragmented sur-
face parts and visual clutter thereof.

6.4 Conclusion

In this paper we have presented a real-time technique for the extraction
of FTLE ridges on a 2D planar seeding structure in unsteady 3D flows.
As we employ ridges as seeding structures for generalized streak sur-
face integration, we focused on the extraction of a subset of all valid
ridges. Whereas we aimed to a) obtain predominant features, i.e., long
continuous ridge lines and b) to remove unwanted ridges such as dis-
continuous structures and crossings to avoid visual clutter while ren-
dering the separating streak surface.

The GPU-based framework allows users to experience a visually
guided exploration of semantic separating surfaces by moving the
probe in space and/or time and changing parameters steering the ridge
extraction and streak surface construction process interactively. To the
best of our knowledge, this is the first time that the reconstruction and
display of semantic separable surfaces in 3D unsteady flows can be
performed at interactive rates, giving rise to new possibilities for gain-
ing insight into complex 3D flow phenomena.

In fact, the interactive treatment of LCS allows insight not only into
the locations of the separating structures but also into their temporal
evolution including changing shapes, appearance and disappearance.
Moreover, regions of interest can be determined interactively by mov-
ing around the seeding plane. This way, a fast visual impression of the
”big picture” of the flow as well an in-depth analysis of relevant parts
(both in space and time) becomes possible.

In the future we will pursue research into the following two direc-
tions: Firstly, we will perform a detailed analysis of the similarities
and differences between generalized streak surfaces and LCS in 3D
flows. Secondly, adaptive meshing techniques for constructing high-
quality polygonal generalized streak surfaces will be examined. In this
respect it will be worthwhile to investigate ridge extraction techniques
that are specifically tailored to the intended application and can moni-
tor topological changes and degeneracies.

ACKNOWLEDGMENTS

The authors wish to thank Simone Camarri et al. for providing the
square cylinder data set, and Tino Weinkauf for resampling the data
onto a cartesian grid. Furthermore we wish to thank Octavian Fred-
erich and co-workers for providing the large eddy simulation results.

REFERENCES

[1] G. Benettin, L. Galgani, A. Giorgilli, and J. M. Strelcyn. Lyapunov char-

acteristic exponent for smooth dynamical systems and hamiltonian sys-

tems; a method for computing all of them. Mechanica, 15(1):9–20, 1980.

[2] K. Bürger, F. Ferstl, H. Theisel, and R. Westermann. Interactive Streak

Surface Visualization on the GPU. IEEE Transactions on Visualization

and Computer Graphics, 15(6):1259–1266, November-December 2009.

[3] K. Bürger, P. Kondratieva, J. Krüger, and R. Westermann. Importance-

Driven Particle Techniques for Flow Visualization. In Proceedings of

IEEE VGTC Pacific Visualization Symposium 2008, pages 71–78, 2008.

[4] K. Bürger, J. Schneider, P. Kondratieva, J. Krüger, and R. Westermann.

Interactive Visual Exploration of Instationary 3D-Flows. In Eurograph-

ics/IEEE VGTC Symposium on Visualization (EuroVis), pages 251–258,

2007.

[5] D. Eberly, R. Gardner, B. Morse, S. Pizer, and C. Scharlach. Ridges for

image analysis. J. Math. Imaging Vis., 4(4):353–373, 1994.

[6] O. Frederich, E. Wassen, and F. Thiele. Flow Simulation around a Fi-

nite Cylinder on Massively Parallel Computer Architecture. In Inter-

national Conference on Parallel Computational Fluid Dynamics, pages

85–93, 2005.

[7] C. Garth, F. Gerhardt, X. Tricoche, and H. Hagen. Efficient Computa-

tion and Visualization of Coherent Structures in Fluid Flow Applications.

IEEE Transactions on Visualization and Computer Graphics, 13:1464–

1471, 2007.

[8] C. Garth, H. Krishnan, X. Tricoche, T. Bobach, and K. I. Joy. Generation

of Accurate Integral Surfaces in Time-Dependent Vector Fields. IEEE

Transactions on Visualization and Computer Graphics, 14(6):1404–

1411, 2008.

[9] C. Garth, G. Li, X. Tricoche, C. Hansen, and H. Hagen. Visualization of

Coherent Structures in Transient 2D Flows. In Topology-Based Methods

in Visualization II (Proceedings of TopoInVis 2007), pages 1–14, March

2009.

[10] S. Guthe, S. Gumhold, and W. Strasser. Interactive visualization of vol-

umetric vector fields using texture based particles. In Proceedings of

WSCG, volume 10, pages 33–41, 2002.

[11] G. Haller. Distinguished material surfaces and coherent structures in

three-dimensional fluid flows. Phys. D, 149(4):248–277, 2001.

[12] G. Haller. Lagrangian coherent structures from approximate velocity

data. Physics of Fluids, 14(6):1851–1861, 2002.

[13] G. Haller and G. Yuan. Lagrangian coherent structures and mixing in

two-dimensional turbulence. Phys. D, 147(3-4):352–370, 2000.

[14] R. M. Haralick. Ridges and valleys on digital images. Computer Vision,

Graphics, and Image Processing, 22(1):28–38, 1983.

[15] J. P. M. Hultquist. Constructing stream surfaces in steady 3D vector

fields. pages 171–178, 1992.

[16] J. Kasten, C. Petz, I. Hotz, B. Noack, and H.-C. Hege. Localized finite-

time lyapunov exponent for unsteady flow analysis. In M. Magnor,

B. Rosenhahn, and H. Theisel, editors, Vision Modeling and Visualiza-

tion, volume 1, pages 265–274. Universität Magdeburg, Inst. f. Simula-

tion u. Graph., 2009.

[17] G. L. Kindlmann, R. S. J. Estépar, S. M. Smith, and C.-F. Westin. Sam-

pling and visualizing creases with scale-space particles. IEEE Trans. Vi-

sualization and Computer Graphics, 15(6):1415–1424, Nov/Dec 2009.

[18] P. Kondratieva, J. Krüger, and R. Westermann. The Application of GPU

Particle Tracing to Diffusion Tensor Field Visualization. 0:10, 2005.

[19] H. Krishnan, C. Garth, and K. Joy. Time and Streak Surfaces for Flow

Visualization in Large Time-Varying Data Sets. IEEE Transactions on

Visualization and Computer Graphics, 15:1267–1274, 2009.

[20] J. Krüger, P. Kipfer, P. Kondratieva, and R. Westermann. A Particle Sys-

tem for Interactive Visualization of 3D Flows. IEEE Transactions on

Visualization and Computer Graphics, 11(6):744–756, 2005.

[21] F. Lekien, C. Coulliette, A. J. Mariano, E. H. Ryan, L. K. Shay, G. Haller,

and J. Marsden. Pollution release tied to invariant manifolds: A case

study for the coast of florida. Phys. D, 210(1), 2005.

[22] T. Lindeberg. Edge detection and ridge detection with automatic scale

selection. Int. J. Comput. Vision, 30(2):117–156, 1998.

[23] D. Lipinski and K. Mohseni. A ridge tracking algorithm and error esti-

mate for efficient computation of lagrangian coherent structures. Chaos:

An Interdisciplinary Journal of Nonlinear Science, 20(1):017504, 2010.

[24] T. McLoughlin, R. Laramee, R. Peikert, F. Post, and M. Chen. Over

Two Decades of Integration-Based, Geometric Flow Visualization. In

Computer Graphics Forum, (to appear), 2010.

[25] D. Merhof, M. Sonntag, F. Enders, C. Nimsky, and G. Greiner. Hy-

brid visualization for white matter tracts using triangle strips and point

sprites. IEEE Transactions on Visualization and Computer Graphics,

12(5):1181–1188, 2006.

[26] K. Palgyi and A. Kuba. A parallel 3d 12-subiteration thinning algorithm.

Graphical Models and Image Processing, 61(4):199 – 221, 1999.

[27] R. Peikert and F. Sadlo. Height Ridge Computation and Filtering for

Visualization. In Proceedings of IEEE VGTC Pacific Visualization Sym-

posium 2008, pages 119–126, 2008.

[28] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch. The

state of the art in flow visualisation: Feature extraction and tracking.

Computer Graphics Forum, 22(4):775–792, 2003.

[29] M. Roerdink. The watershed transform: definitions, algorithms, and par-

allellization strategies. Fundamenta Informaticae, 41(1):187–228, 2000.

[30] F. Sadlo and R. Peikert. Efficient Visualization of Lagrangian Coherent

Structures by Filtered AMR Ridge Extraction. IEEE Transactions on

Visualization and Computer Graphics, 13(6):1456–1463, 2007.

[31] F. Sadlo and R. Peikert. Visualizing lagrangian coherent structures and

comparison to vector field topology. In Topology-Based Methods in Visu-

alization II (Proceedings of TopoInVis 2007), pages 15–30, March 2009.

[32] F. Sadlo, A. Rigazzi, and R. Peikert. Time-Dependent Visualization of

Lagrangian Coherent Structures by Grid Advection. In Proceedings of

TopoInVis 2009 (to appear). Springer, 2009.

[33] F. Sadlo and D. Weiskopf. Time-Dependent 2D Vector Field Topology:

An Approach Inspired by Lagrangian Coherent Structures. Computer

Graphics Forum, 29(1):88–100, 2010.

[34] J. Sahner, T. Weinkauf, N. Teuber, and H.-C. Hege. Vortex and Strain

Skeletons in Eulerian and Lagrangian Frames. IEEE Transactions on

Visualization and Computer Graphics, 13(5):980–990, September - Oc-

tober 2007.

[35] S.Camarri, M. Salvetti, M. Buffoni, and A.Iollo. Simulation of the three-

dimensional flow around a square cylinder between parallel walls at mod-

erate Reynolds numbers. In Proceedings of XVII Congresso di Meccanica

Teorica ed Applicata, 2005.

[36] T. Schafhitzel, E. Tejada, D. Weiskopf, and T. Ertl. Point-based Stream

Surfaces and Path Surfaces. In Proceedings of Graphics Interface 2007,

pages 289–296, 2007.

[37] T. Schafhitzel, J. E. Vollrath, J. P. Gois, D. Weiskopf, A. Castelo, and

T. Ertl. Topology-preserving λ2-based vortex core line detection for flow

visualization. Computer Graphics Forum, 27(3):1023–1030, 2008.

[38] G. Scheuermann, T. Bobach, H. H. K. Mahrous, B. Hamann, K. Joy, and

W. Kollmann. A Tetrahedra-based Stream Surface Algorithm. pages

151–158, 2001.

[39] M. Schirski, C. Bischof, and T. Kuhlen. Interactive particle tracing on

tetrahedral grids using the GPU. In Vision Modeling and Visualization,

2006.

[40] M. Schirski, A. Gerndt, T. van Reimersdahl, T. Kuhlen, P. Adomeit,

O. Lang, S. Pischinger, and C. H. Bischof. ViSTA FlowLib: A Frame-

work for Interactive Visualization and Exploration of Unsteady Flows in

Virtual Environments. In 7th International Workshop on Immersive Pro-

jection Technology, 9th Eurographics Workshop on Virtual Enviroments,

pages 77–86, 2003.

[41] M. Schirski, T. Kuhlen, M. Hopp, P. Adomeit, S. Pischinger, and

C. Bischof. Efficient visualization of large amounts of particle trajectories

in virtual environments using virtual tubelets. In VRCAI ’04: Proceed-

ings of the 2004 ACM SIGGRAPH international conference on Virtual

Reality continuum and its applications in industry, pages 141–147, 2004.

[42] D. Schneider, A. Wiebel, and G. Scheuermann. Smooth Stream Surfaces

of Fourth Order Precision. In Eurographics/IEEE VGTC Symposium on

Visualization (EuroVis), pages 871–878, 2009.

[43] T. Schultz, H. Theisel, and H.-P. Seidel. Crease Surfaces: From Theory to

Extraction and Application to Diffusion Tensor MRI. IEEE Transactions

on Visualization and Computer Graphics, 16:109–119, 2010.

[44] S. C. Shadden, F. Lekien, and J. E. Marsden. Definition and properties

of lagrangian coherent structures from finite-time lyapunov exponents in

two-dimensional aperiodic flows. Phys. D, 212(7):271–304, 2005.

[45] S. C. Shadden, F. Lekien, J. D. Paduan, F. P. Chavez, and J. E. Marsden.

The correlation between surface drifters and coherent structures based on

high-frequency radar data in monterey bay. Deep Sea Research Part II:

Topical Studies in Oceanography, 56(3-5):161 – 172, 2009. AOSN II:

The Science and Technology of an Autonomous Ocean Sampling Net-

work.

[46] H.-W. Shen, G.-S. Li, and U. D. Bordoloi. Interactive Visualization

of Three-Dimensional Vector Fields with Flexible Appearance Control.

IEEE Transactions on Visualization and Computer Graphics, 10(4):434–

445, 2004.

[47] C. Sigg, T. Weyrich, M. Botsch, and M. Gross. GPU-Based Ray Casting

of Quadratic Surfaces. In Proceedings of the Eurographics/IEEE VGTC

Symposium on Point-Based Graphics, pages 59–65, 2006.

[48] D. Stalling. Fast Texture-based Algorithms for Vector Field Visualiza-

tion. PhD thesis, FU Berlin, Department of Mathematics and Computer

Science, 1998.

[49] J. J. van Wijk. Implicit Stream Surfaces. pages 245–252, 1993.

[50] W. von Funck, T. Weinkauf, H. Theisel, and H.-P. Seidel. Smoke Sur-

faces: An Interactive Flow Visualization Technique Inspired by Real-

World Flow Experiments. IEEE Transactions on Visualization and Com-

puter Graphics, 14(6):1396–1403, 2008.

[51] M. Weldon, T. Peacock, G. B. Jacobs, M. Helu, and G. Haller. Exper-

imental and numerical investigation of the kinematic theory of unsteady

separation. Journal of Fluid Mechanics, 611:1–11, 2008.

[52] A. Wiebel, D. Schneider, H. Jaenicke, X. Tricoche, and G. Scheuer-

mann. Generalized Streak Lines: Analysis and Visualization of Bound-

ary Induced Vortices. IEEE Transactions on Visualization and Computer

Graphics, 13(6):1735–1742, 2007.

