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Abstract

We introduce an approach to visualize stationary 2D vector fields with global uncertainty obtained by considering
the transport of local uncertainty in the flow. For this, we extend the concept of vector field topology to uncer-
tain vector fields by considering the vector field as a density distribution function. By generalizing the concepts
of stream lines and critical points we obtain a number of density fields representing an uncertain topological
segmentation. Their visualization as height surfaces gives insight into both the flow behavior and its uncertainty.
We present a Monte Carlo approach where we integrate probabilistic particle paths, which lead to the segmen-
tation of topological features. Moreover, we extend our algorithms to detect saddle points and present efficient
implementations. Finally, we apply our technique to a number of real and synthetic test data sets.

1. Introduction

The consideration of uncertainty is one of the most relevant
problems in visualization [Joh0O4]. A variety of methods has
been introduced to represent uncertainty in scalar, vector,
and tensor fields. Most of them have in common that un-
certainty is a local property of the field, i.e., it is obtained
by a locally computed or measured process. Vector fields
describing flow phenomena may also contain a local uncer-
tainty which is due to noise, measurement/simulation errors,
uncertain simulation parameters, initial and boundary con-
ditions or the inherent randomness due to turbulence. How-
ever, in flow fields this uncertainty is transported along the
flow, yielding a global uncertainty. Even if the integration
of a particle starts in a rather certain region (i.e., in a re-
gion where it is almost sure that the velocity has a certain
value), it may be transported into uncertain regions, making
statements about its behavior based on a local analysis im-
possible. Informally spoken: if the flow goes from an area A
with low local uncertainty to an area B with high local un-
certainty, the global uncertainty in A is high because of the
uncertainty of the outgoing flow.

In order to visualize global uncertainty in flows, we have
to build upon approaches which incorporate a global anal-
ysis of the field. Therefore, we rely on topological meth-
ods. Our input are N 2D steady vector fields describing N
different simulations/measurements of the same flow phe-
nomenon. Out of them, we model the local uncertainty at any
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location of the domain. We describe a vector field equipped
with local uncertainty as a density distribution function. In
order to analyze its asymptotic flow behavior, we integrate
particle density functions describing the probability that a
particle is at a certain location. For this setup we define the
concepts of stream lines and critical points. The resulting
uncertain topological segmentation consists of a number of
density distribution functions which represent the probabil-
ity that a particle starting from a particular location will end
in an (uncertain) source or sink. We visualize them as well
as the uncertain critical points as height fields.

2. Related Work

Different types of uncertainty can appear during the
whole visualization process. [GS06, JS03, PWL97] give an
overview of existing uncertainty based visualization ap-
proaches. Uncertainty has been considered in fields of visu-
alization, like isosurface [DKLP02, GR02, RLBS03, Bro04]
and information visualization [SPBOS].

For flow and vector data, a number of uncertainty visual-
ization techniques have been presented. [LPSW96, WSF*95]
present glyph based approaches. [SJK04] describes un-
certainty patterns obtained by a reaction-diffusion model.
[BWEO5] introduces texture based flow visualization tech-
niques incorporating uncertainty which is represented by
cross advection and error diffusion. Furthermore, [BWEO06]
uses additional color schemes for representing uncertainty.
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[ZDG*08] present an approach to visualize uncertainty in
bidirectional vector fields. Note that all these previous ap-
proaches to uncertainty in flow visualization consider only
local uncertainty and do not incorporate its transport. One
approach to automatically analyze the reliability of flow pre-
dictions in a global context is given in [Hal02] where it is
shown that under certain conditions rather unreliable input
data gives still a reliable flow prediction.

Topological methods are a standard tool for vector field
visualization. They gained a rather high popularity because
they express even complex flow behavior by means of
only a limited number of graphical primitives. We refer
to [PVH*03, LHZPO05] for state of the art reports in flow
topology. One step towards the consideration of uncertainty
in topological visualization has been taken in the context
of DT-MRI data where a probabilistic fiber tracking is ap-
plied [MIW*07,STSO07].

3. Vector Fields with Uncertainty

In this paper we consider stationary 2D vector fields. In clas-
sical vector field visualization such a vector field is described
as a map from a 2D domain D into R? as

Uce (x Y )
Vel(x,y) = , (x,y)eD. 1
(%) ( ve(x,y) ) (x,) (D
In the following, we call this a certain vector field. If uncer-
tainty comes into play, there is no unique vector assigned to
a point (x,y) but rather a probability distribution of vectors,
leading to the following definition:

Definition 1 A stationary 2D uncertain vector field over the
domain D is a 4D scalar field p, (x,y; u,v) with

e (r,y) €Dand (u,v) € R?
o p(x,y;u,v) >0 (x,y) €Dand (u,v) € R?
o [ 7. pu(x,y;u,v)dudv=1 forall (x,y)eD.

The value py(x,y; u,v) du dv denotes the probability that at
the location (x,y) the vector field has some value in the range
[u,u+du] x [v,v+dv].

3.1. Examples of Uncertain Vector Fields

A certain vector field as described in (1) is a special case
of an uncertain vector field and described by the 2D Dirac
delta distribution py, (x,y; u,v) = 8 (u—uc(x,y), v—ve(x,y)).
A Gaussian distribution 2D vector field is given by a 2D vec-
tor field v (x,y) and a 2 x 2 symmetric positive definite sec-
ond order tensor field T(x,y). For a location (x,y) it assumes
a Gaussian distribution of the vectors around the mean v,
with the standard deviation encoded in the covariance ma-
trix T:

1 I T el
) : _ —3(v=ve)T T (v—v,) o)

with T =T(x,y) , v = (u,v)T. Fig. 1 gives an illustration.

(xy) ¥ X
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Figure 1: Gaussian distribution vector field; a) at a loca-
tion (x,y) the distribution is defined by a vector v. and a 2D
tensor T which is visualized as an ellipse; b) isolines of the
corresponding distribution field p,.

Figure 2: Integration of 2 particles in the Gaussian distri-
bution field (3) starting from the same location.

3.2. Integrating Stream Lines

Classical stream line integration is not defined for uncertain
vector fields as there is no unique vector at a location (x,y).
To illustrate this, we consider a Gaussian distribution field
(2) with

Vc(xvy):_o""( ; ) ’ T(va): |: ; i :| 3)
and start an “uncertain Euler integration” of a particle at
(x,y) = (—9.5,0) in the following way: at the position
(xi,yi), a vector v(x;,y;) is randomly chosen by evaluating
the distribution function py(x;,y;; u,v). Fig. 2 shows the in-
tegration of 2 different particles. Note that the particles fol-
low different paths but have a similar global behavior: they
first move towards the point (0,0), then (due to the uncer-
tainty) move randomly around it without leaving its neigh-
borhood. This behavior does not depend on the step size of
the integration: changing the step size effects the shapes and
complexity of the curves but not their global behavior. Also
note that the particles produce an ellipse shaped path pattern
corresponding to T.

This example shows that for uncertain vector fields we
have to advect particle density functions instead of particular
particles.

Definition 2 A particle density function over the domain D
is a 2D time—dependent scalar field p(x,y;r) with (x,y) € D,
t€RT and

e p(x,y;t) >0forall (x,y) eDand? >0
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o [Jp plx,yt)dxdy<1forallz>0.
(We use < instead of = because particles may leave the
domain during integration.)

The value p(x,y;t)dxdy denotes the ratio of particles in
[x,x+ dx] X [y,y + dy] in relation to the initial number of par-
ticlesin D atz = 0.

Now we consider the spatial transport of particle densities
by an uncertain vector field p,. In order to avoid boundary
effects we consider the infinite domain D = R2. The densi-
ties are represented by virtual particles without inertia that
are transported by the uncertain vector field p,. Let Ar be
a time interval that is short enough that the virtual particles
can be considered to move on a straight line, i.e., in a con-
stant vector field, during this interval. Then at time ¢ + At the
number of particles in an infinitesimal volume dxdy at some
location (x,y) is the sum of the numbers of particles in cells
drds at all locations (r, s) times the probabilities that they are
transported from (r,s) to (x,y) in time Az, i.e., they experi-
ence a velocity ((x—r)/At,(y—s)/Ar)T. These probabilities
are given by p,(r,s; %55, 550 d(35F) d(45°). After division
by the cell volumes we have dxdy = drds. This yields the
following expression for the transport of particle densities:

p(x,yst +Ar)

] X—r y—s, X—T, Y=
//Dp(ns,t)pv(r,s,—m A

1 7 X—r y—s
I s: - 4
A[z /Ap(r7 S,l)pv(r,s, At I At )d}"dS ( )

A formal definition of a stream line in an uncertain vector
field is given by:

Definition 3 Given an uncertain vector field p,(x,y; u,v), a
stream line starting at the particle density function pg(x,y)
is a time-dependent particle density function p(x,y;¢) with

p(xyito) = polx,y)
Ipryit) o Pyt An) — plxyit)
_— = m

ot At—0 At

plx,y;t+Ar) = (4).

Note that definition (3) defines a forward integration of p
in p,. A backward integration is obtained by a forward in-
tegration of p in py(x,y; —u, —v). Definition (3) also leads
to uniqueness of streamlines that are started at the same
particle densitiy function pg(x,y). However, ‘3—’; can gener-
ally be obtained only by numerical differentiation. As an
example for particle density integration, imagine that at a
time #; all particles are at a location (r,s) € D, i.e., that
p(x,y;t;) = 8(x —r,y—s). Applying one step of an Euler
integration with the step size Az gives the new particle distri-
bution function p(x,y;#;11) at the time f;11 =¢; + At as

( 1) 1 X—r y—s
X, V.1 = — s, ) .
PX Y Tt At2 Py ) At At
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Figure 3: One Euler integration step of a particle density
function initially concentrated at (r,s) with different step
sizes At: a) At =1, b) At = 0.5, ¢) At = 0.25; shown are
the new particle density functions p(x,y;t; + At) as isolines.

Note that definition 2) guarantees that
J Jopp(x,y;tix1)dxdy = 1 for any positive Ar if D = R.
Fig. 3 illustrates one step of this Euler integration if p, is
a Gaussian distribution field: the smaller At, the closer the
peak of p(x,y;t;11) comes to (r,s) and the higher this peak
is.

3.3. Critical Point Distributions

Once the concept of stream lines is established, we can
make a topological analysis of an uncertain vector field:
starting from every point (r,s) € D (i.e., from p(x,y;19) =
O(x—r,y—s)) we start a stream line integration and observe
its asymptotic behavior for # — oo which generally converges
to a critical point distribution:

Definition 4 The particle density function pg(x,y) is a crit-
ical point distribution of p, if for a stream line integration
starting at p(x,y;fo) it holds %—f =

In the following we use the terms critical point distribu-
tion and critical point synonymously whenever the context
is clear.

Lemma 1 Given are 7 critical points pj(x,y),..., pn(x,y) of
pv. Then any positive linear combination of critical points is
a critical point as well: Y7 | o p; is a critical point for any
0<ap,..,;<land Y] ;<1

Note that the linear combination is usually not convex, i.e.,
not ) ; &; = 1, as part of the flow leaves the domain. Lemma
1 states that critical points of uncertain vector fields are
not isolated but building a continuum of critical points. The
proof follows directly from definition 3. In order to make a
topological analysis, we have to find a finite number of lin-
early independent critical points such that every critical point
can be represented as a positive linear combination of them.

Definition 5 A critical point p(x,y) is a sink distribution (or
a stable critical point) of p,, if the forward integration of any
small perturbation of p converges to p. The critical point
p(x,y) is a source distribution of p, if the backward integra-
tion of any small perturbation of p converges to p. The criti-
cal point p(x,y) is a saddle distribution of p, if both forward
and backward integration are unstable, i.e., diverge from p
for a small perturbation of p.
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Note that sources and sinks play a different role than saddles
for the definition of the topological skeleton of (certain) vec-
tor fields: sources and sinks define the number of different
areas to be segmented (every segmented area corresponds to
a pair of a source and a sink), while saddles are the start-
ing points of the separating stream lines. Similar to this, we
also focus on sources and sinks to define the segmentation
of uncertain fields.

Definition 6 Given an uncertain vector field p,(x,y; u,v),
a sequence of sinks (py(x,), ..., pu(x,y)) is called spanning
sink sequence if p1, ..., p, are linearly independent and every
sink p(x,y) of p, can be uniquely described as p =Y. | &; p;
with 0 < ap,...,a, < 1 and ¥/ o; < 1. Similarly, a se-
quence of sources (P (x,y),..., om(x,y)) is called spanning
source sequence if py,..., py, are linearly independent and
every source p(x,y) of p, can be uniquely described as
p=Y" Bipiwith0<By,....Bn<land Y}, B <1

Fig. 4a gives an illustration: the Gaussian distribution field
(2) with

_ (1= (140 (1=)2) = x?
vc(x,y) ( y(l_y)(1+y)(1—x2)+yx2)

025 0 } )

Txy) = { 0 025

over the domain [—1.5,1.5]2. There, the topological skele-
ton of v, consists of 5 critical points: a saddle at (0,0),
two sources at (—1,0) and (1,0), and two sinks at (0,—1)
and (0,1) (see the underlying LIC image in Fig. 4a). For
the uncertain case, the spanning sink sequence consists of
two sinks p1,p; which are shown as blue height fields
in Fig. 4a. The spanning source sequence consists of two
sources pi,p2, shown as red height fields in Fig. 4. The
saddle p; is represented as a yellow height surface. Note
that py, p2, p1, P2, P1 are almost zero in most regions except
rather narrow peak regions. We draw their height fields only
if they exceed a certain € > 0. Here we have chosen € =0.01.
This allows to show multiple height surfaces without visual
clutter. Note that there is a one-to-one relation between the
critical points of v, and the spanning source sequence of p,,
as long as ||T||F is small enough, i.e., p, is dominated by v,.

Once a spanning sink sequence (p1,..., p,) is found, ev-
ery sink p can be described as p = Y, a; p;. We call
(ay,..., ;) the coordinates of p with respect to the span-
ning sink sequence (pi,...,py). In a similar way we define
(B1,-..,Bm) as the coordinates of a source p with respect to
the spanning source sequence (p1, ..., Pm)-

3.4. Topological Skeleton

Now we can describe our algorithm to extract the uncertain
topological skeleton in the following way:

Given an uncertain 2D vector field p, (x,y; u,v) over the do-
main D:

1. Find a spanning sink sequence (p1, ..., pn) of p,.

2. Find a spanning source sequence (pi, ..., Jm) of py.
3. For every location (r,s) € D:

a. start a forward stream line integration at po(r,s) =
S(x —r,y —s) until it converges to the sink p(r,s) or
completely leaves D

b. start a backward stream line integration at po(r,s) =
S(x—r,y—s) until it converges to the source j(r,s) or
completely leaves D

c. compute the coordinates (o (r,s),...,0(r,s)) of
p(r,s) with respect to (py,..., pn)

d. compute the coordinates (Bi(r,s),...,Bm(r,s)) of
p(r,s) with respect to (g, ..., Pm)

The result of the topological segmentation are n + m scalar
fields (ot (r,s),...,0,(r,5)) and (Bi(r,s),..., Bu(r,s)) with
(r,s) € D. Informally spoken, ¢;(r,s) describes the probabil-
ity that a particle started to move at (r,s) will end in the i-th
(uncertain) sink under forward integration. Similarly f3;(r, s)
gives the probability for a particle starting at (r,s) to con-
verge to the j-th (uncertain) source under backward integra-
tion.

3.5. Saddle Points

For a complete topological analysis of the vector field, we
have to detect saddle points in addition to the topological
skeleton described in section 3.4. However, for uncertain
vector fields finding saddle points is difficult, because they
are unstable under forward and backward integration (see
definition 5). To still find such points, we assume that the
velocity of the (uncertain) vector field drops around critical
points. To find local velocity minima, we derive an uncertain
vector field p, that corresponds to the gradient of the squared
velocity in p,. Given a sample of vy(x,y) = (us,vs)T of
Pv(x,y;u,v) at a location (x,y), we can compute the squared
velocity gradient v, as

Ve = V(V.%) = (J(Vs))TVm (6)

where J(v;) is the Jacobian of vy. By creating many samples
v = (J(vs))Tvs, we can approximate the uncertain gradient
field p,. The uncertain sources of p, correspond to local ve-
locity minima. However, not all minima correspond to sad-
dles. Therefore, we classify the sources of vy by computing
its (uncertain) Poincare-Hopf index at p,. See section 4.4 for
details.

3.6. Visualization

For an appropriate visualization of our topological seg-
mentation, we want to represent both, the spanning criti-
cal point sets and the topological characterizations in a sin-
gle visualization. This is possible because the critical points
in the spanning critical point set are usually rather sepa-
rated. Since the probability that a particle started at (r,s)
moves into the i—th sink under forward and into the j—th
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c)

Figure 4: Gaussian distributed vector field (6): a) LIC of v, and uncertain critical points, b) complete segmentation as height
fields, c) closeup of one sector depicting the flow from a source (red) to a sink (blue), d) skeleton reduced to uncertain areas.

source under backward integration is described by the prod-
uct o;(r,s) - Bj(r,s), we represent the n x m functions o;f3;
as randomly colored height fields but cut off areas where
a; < € for a small user-chosen € > 0 (¢ = 0.01 in this pa-
per). We use height fields, because more than two ¢;3; func-
tions could overlap. Therefore, other techniques like color
maps do not work well for this purpose. Every height sur-
face can be interactively selected/deselected. In addition, we
show the critical points as height surfaces as well: sinks in
blue, sources in red, and saddles in yellow, all with the same
height for visual clarity. Fig. 4b-d give an illustration for the
vector field (5). Since here we have two sources and two
sinks, 4 topological regions are represented as height fields
(Fig. 4b). Fig. 4c shows a closeup of a region describing the
flow from a source (red) to a particular sink (blue). Note that
this height field is almost 1 for a rather large area, indicat-
ing a rather certain flow behavior. To focus on the uncertain
regions, we cut off the height surfaces in areas of high cer-
tainty, i.e., we render them only if € < o;f8 j < 1—¢. This
way, only those areas are rendered where at least two height
surfaces are significantly above zero, i.e., where the flow be-
havior is uncertain. Fig. 4d illustrates this. In this Fig. (as
well as in the following visualizations) we use a LIC (line
integral convolution) of the average field v, as context in-
formation for our uncertain visualization. Note that there is
no direct correlation between the isolines of our height fields
and the stream lines of v,.
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4. Technical Realization
4.1. Obtaining Uncertain Vector Fields

We determine uncertainty from given data similarly to the
approach proposed in [BWEO5] that measures a flow phe-
nomenon multiple times. This way our input are N vector
fields over the same domain which vary due to local uncer-
tainty. For these N samples we determine parameters of a
bivariate Gaussian distribution, i.e., we obtain a mean vec-
tor field v, and a tensor field of covariance matrices T and
can hence model p,. The choice of the Gaussian distribution
is the most common empirical distribution of errors. It pro-
vides a fair balance of good approximation properties and
efficient numerical computation. Contrary to [BWEOQS5], we
model the local uncertainty not only orthogonal to the flow
direction but in every direction. This ensures stability in ar-
eas of slow flow.

4.2. Numerical Stream Line Integration

To integrate stream lines, we chose a Lagrangian Monte-
Carlo approach based on probabilistic particle movements.
The initial density pg is sampled by a high number of par-
ticles reflecting the initial distribution. Each particle is inte-
grated by an “uncertain” Euler method: sampling the vector
field (u,v)T at a certain location (x;,y;) yields a random vec-
tor respecting the distribution p, (x;,y;; u,v). In practice, we
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use the Box-Muller method to sample the Gaussian distribu-
tion, which limits the sampling region to a finite radius. This
sample is multiplied with the time step and added to the par-
ticle position to update its state. After a sufficient number
of time steps the final distribution is approximated from the
discrete spatial distribution of particles. In practice, we mon-
itor changes in the particle density distribution over time and
stop the integration if no significant changes are observed.
We implement this monitoring by dividing the domain into
uniform cells where the particles are counted. In our exam-
ples, the cell grid was ten times the size of the input vector
field. To check for invariant distributions, we calculate the
maximal difference of particle numbers within the cells ev-
ery 50 time steps. We consider the distribution as stationary
if this difference drops below a threshold that depends on the
total number of particles and the cell size.

Special care must be taken if the particles leave the do-
main. At no-slip boundaries (e. g., the step in Fig. 7) , we
project the particles back into the domain. If the boundary
contains inflow or outflow regions, we simply stop the par-
ticles and accumulate them. This way, inflow/outflow areas
act as topological source/sink and can therefore be consid-
ered for our segmentation.

4.3. Computing the Spanning Source/Sink Sequence

To compute the spanning sink sequence, we start with a
Monte Carlo based integration where a high number of ini-
tial particles is equally distributed in D. Since this integra-
tion includes particles from every location, the critical point
Dq to which it converges will contain parts of every element
of the spanning sink sequence. To extract them from p,, we
compute all local maxima of p, (including the borders of the
domain) and assign a region to each of them by a flood fill
algorithm. This way we find a critical point p; for every lo-
cal maximum of p,. Before considering all p; as elements
of the spanning sink sequence, we have to check them for
linear independence. If two or more p; are linearly depen-
dent, they are merged into one component of the spanning
sink sequence. To get a spanning source sequence, a similar
approach is done in backward direction.

In addition to a pure CPU version of the Monte Carlo sim-
ulation, we developed a GPU version, including interpola-
tion of the distribution field, pseudo random number gener-
ation and path integration. Table 1 gives a comparison be-
tween the CPU and GPU versions. All timings in this paper
were measured on an AMD Opteron 2218 and an NVIDIA
GeForce 9800GTX platform with the GPU version.

4.4. Saddle Points

The extraction of saddle points starts similar to the computa-
tion of sources. The key difference is that we use the uncer-
tain vector field p, from section 3.5 to integrate the particles.
We implemented two different approaches to achieve this:

CPU GPU
Euler integration 307ms  100ms
Explicit computation of pg 701ms -
Jacobian on demand 1006ms  114ms

Table 1: Timings for one integration step for 10° particles.

Explicit computation: The original field p, transformed by
its transposed Jacobian (see equation 6) possibly results in
uncertainty that is no Gaussian distribution. Therefore, we
explicitly compute p, by storing a general density distri-
bution function for each node (x,y) in the vector field on
a discrete map. We build this map by randomly sampling
the Jacobian and p, at (x,y) a sufficient number of times.
Finally, we can advect particles by sampling these maps.

Jacobian on demand: An alternative to the explicit storage
of pg is to transform p, in the Euler integration only, when
a sample is needed. Here, we compute a probabilistic sam-
ple of JT and p, for every particle at every time step,
which is used to advect the particle. The benefit of this
method is the reduced memory overhead. Therefore, we
also included this in our GPU implementation. Table 1
gives a comparison of our implementations.

After finding the source distribution of pg, we segment
individual critical points as described in section 4.3. Finally,
every critical point must be classified w.r.t. p, to find sad-
dle points. For this task, we find the probabilities for the
Poincare-Hopf index by sampling the local region around
the critical points and computing its index a sufficient num-
ber of times. We consider the critical point only as a saddle,
if index -1 has the highest probability.

At this point, we can also extract sink and sources as criti-
cal points in p, with index +1 at p,.. Therefore, the extraction
of critical points in pg serves as a preprocessing step of our
algorithm. We use the found sinks and sources as starting
points for the particle integration described in section 4.3.
This resolves the shapes of the sources and sinks in p,.

4.5. Computing Coordinates

For the integration starting at every location (r,s), we use
the Monte Carlo integration and release a higher number of
particles at (r,s) until the distribution converges to a sink
ps(r,s). The coordinates of pg(r,s) are the relative number
of particles that arrived in the respective sinks (p1,..., pn).

In this algorithm, a high number of particles is released at
every sampling position in the domain and integrated for a
high number of steps. To speed this up, we exploit the spatial
coherence of the particles. If the coordinates ¢; are already
known at a certain particle position, we can stop the particle,
because its probabilities to reach sink i are expressed in o;.
Thus, the particle adds to ps(r,s) with these probabilities. To
fully exploit the spatial coherence, we first integrate the par-
ticles that are started near the sinks and store the respective
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coordinates at the starting points. We then successively pro-
ceed to the particles that are started in the neighborhood of
the just completed region. These particles have a high proba-
bility to run into that region, where they can be stopped after
only a few integration steps. This way, the total number of
necessary integration steps decreases considerably. Depend-
ing on the input data we experienced a speed-up of 5x to
10x.

5. Results

To test our approach, we apply the extraction of uncertain
topology to two synthetic, one measured, and two simulated
data sets.

5.1. Synthetic Data Sets

Fig. 5a and 5b show two input vector fields which are ob-
tained by considering the field

14+ 1.5x .
( x(y—0.5)(5x—1) ) ifx<0
1—x
e -1

in the domain [—0.8,1.2] x [—0.2,1.2], where a rather strong
Gaussian noise is added to the right-hand region, e.g., the re-
gion x > 0. From a sufficient number of them we can recon-
struct the uncertain distribution field

O]

V=
ifx>0

T(x,y):[g 8] ifx<0
ve=v, T= 19 (8)
T()@y)z{ 8 1 ] ifx>0
7

This means that for x < 0 we have a zero local uncertainty:
all input fields have exactly the same value there. Fig. 5c
shows our uncertain topological skeleton consisting of one
source (red height field), two sinks (blue) and one saddle
(yellow). They give two topological sectors where the height
fields are shown only in the uncertain areas.

This example shows two properties of our approach:
firstly, the right hand side of the input fields have a strong
topological complexity which is mainly due to the added
Gaussian noise. Our approach can deal with it by revealing
the few important topological structures. Secondly, although
there is no local uncertainty in the left-hand part of the flow,
our algorithm finds a rather strong global uncertainty there:
for rather large areas it is uncertain to which sink a particle
started from there will converge. These are the areas where
the two height surfaces cross and overlap.

Fig. 6 shows a synthetic field to study the impact of in-
creasing uncertainty on the topology. We constructed an ini-
tial vector field v, as gradient of a Perlin noise scalar field.
As shown in Fig. 6a, its topology contains many critical
points. Then we added different amounts of uncertainty, i.e.,
an isotropic matrix T with || T||r = 0.2,2.0,5.0, respectively.
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Figure 5: Flow from a certain to an uncertain area: a, b)
samples of the input fields are identical on the left-hand side
but differ significantly in the right-hand region; c) the topo-
logical skeleton shows the global transport of uncertainty.

Increasing ||T||r has two effects: the height surfaces show
more overlapping areas and therefore more uncertainty, and
the number of uncertain critical points decreases. Compared
to Fig. 6a, the uncertain topology contains fewer structures
that are more robust against variations in flow behavior.

5.2. PIV Data Set

Fig. 7 shows a PIV (particle image velocimetry) measure-
ment of a real flow around a backward facing step. The PIV
measurement was carried out 1024 times, yielding 1024 re-
constructed vector fields on a regular 105x103 grid. Fig. 7a
and 7b show 2 consecutive of these fields which act as in-
put for our approach. They look rather different, indicating
a higher local uncertainty. Moreover, no particular order or
temporal similarity comes with the data, such that an uncer-
tain Gaussian distribution field is the method of choice for
reconstruction. Our uncertain topological visualization (Fig.
Tc) consists of one saddle and two sources. In addition we in-
terpret areas of inflow/outflow at the domain boundaries as
sources/sinks as well, yielding 3 more sources and 3 more
sinks (marked red and blue at the domain boundaries). The
obstacle is modeled with no-slip boundaries. The visualiza-
tion shows a generally high uncertainty: in rather large areas,
none of the height surfaces is 1, meaning that only proba-
bilistic statements about the flow behavior are possible. The
only certain region is the upper part of the flow where the
underlying LIC images are visible, indicating a rather lami-
nar flow from the right-hand to the left-hand boundary. Fig.
7d is a close-up of Fig. 7c. The computing time for this data
set was 5 minutes and 41 seconds.
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Figure 6: Increasing the uncertainty of a random vector field: a) certain topology of mean vector field; b) | T||r = 0.2; ¢)

[ T||F =2.0; d) |T||F = 5.0.

5.3. Flow in the North Sea

Fig. 8 shows the visualization of simulated flow of the
North Sea in the German Bight (Deutsche Bucht) between
17/10/2008 and 09/11/2008. Although the flow is 3D, it is
dominated by its horizontal components and can therefore
be interpreted as a 2D vector field with divergence. The flow
is strongly dominated by the tides, leading to a constantly
changing domain over time. For a visual analysis, we have
selected all time steps of the same relative tide time (i.e.,
where the sea has flooded approximately the same amount
of land), leading to 33 data sets over a regular 160 x 130
grid which describe the flow every 12 hours and 25 min-
utes (one tidal period). Fig. 8a and 8b show two of the input
data sets. Fig. 8c shows the results of our uncertain topolog-
ical analysis: including boundary inflow/outflow we have 19
sources and 21 sinks, the corresponding uncertain topology
reveals both regions of certain and uncertain behavior. The
computing time was 8 minutes and 56 seconds.

5.4. Flow in a Bay Area

Fig. 9 shows a data set describing (the perpendicular of) the
flow of a bay area of the Baltic Sea near Greifswald (Ger-
many). The data was given as an incomplete flow data set on
aregular 115 x 103 grid at 25 time steps. We use these time

steps as the input fields of our method. Fig. 9a-c show three
of them as LIC images. Our uncertain topology revealed 74
sinks and 78 sources including regions on the boundary that
where detected as critical points (see Fig. 9d). The flow falls
into three classes of main behavior. In the middle part, there
are large regions of a certain behavior where the underlying
LIC plane is visible. Contrary, in the areas left and right of
the center region strong overlap of height surfaces appears,
indicating a generally more uncertain behavior. The comput-
ing time for this data set was 2 minutes and 13 seconds.

6. Discussion

Uncertain vector field topology is clearly a generalization
of the classical certain vector field topology. However, even
though we provide a GPU-based highly-parallel implemen-
tation, the computing time for uncertain topology is still
higher than for the certain topology. This is due to the fact
that we still do an expensive integration for every point,
while for certain topologies only a low number of separatri-
ces have to be integrated. These significantly high computing
costs only pay off for data sets where the uncertainty is rel-
evant and of special interest. For data sets where the uncer-
tainty is less relevant, a faster certain topological extraction
may give almost the same segmentation than the methods
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Figure 7: PIV data set of a flow around a backward facing
step: a, b) two of the 1024 data sets, c) uncertain topological
skeleton, d) close-up.

presented in this paper. Our approach is therefore not going
to replace the certain topology but is a generalization par-
ticularly useful for the analysis of global uncertainty in flow
fields.

Our method produces usually less uncertain critical points
than the input fields have, it can therefore be interpreted
as a topology simplification method. There is a number of
approaches for topological simplification of (certain) vec-
tor fields [dLvL99a, dLvL99b, TSHOO, TSHO1]. However,
these methods consider only local conditions for simplifica-
tion and therefore might give different results than our global
method. For example, the results in Fig. 5 are hard to achieve
with local topology simplification methods.
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Figure 8: Topological skeleton of a simulated flow.

Figure 9: Flow in a bay area: a-c) LIC of input fields; d)
topological skeleton of the uncertain vector field.
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7. Conclusions
In this paper we made the following contributions:

e We have considered uncertainty in vector fields not only
as a local feature but incorporated its transport as well.

e For this we have introduced uncertain vector fields as
density distribution functions. Furthermore, particles and
their integration are density functions as well.

e In uncertain vector fields, we have defined a topological
segmentation based on an uncertain stream line integra-
tion. The resulting segmentation consists of a number of
distribution functions which show the probability density
that a particle starting from a given location will converge
to a considered source/sink. We visualize both the critical
points and the density functions as height fields.

e We have applied the technique to a number of uncertain
vector field data sets which consist of different measure-
ments or simulations of the velocity at every location of
the domain.

There are a number of issues for future research. Firstly, spa-
tial and temporal coherence of adjacent locations and parti-
cle density functions may be further exploited to speed up
the approach. Secondly, the extension of the approach to 3D
fields is necessary. While the extension to 3D of most con-
cepts described in this paper is straightforward, it is prac-
tically only possible in combination with a significant ac-
celeration of the approach. Thirdly, the extension to time-
dependent fields is desired, similar to extensions to cover
the behavior of stream lines and path lines in certain time-
dependent fields.

8. Acknowledgements

We thank Dieter Schrader (Bundesamt fuer Seeschifffahrt
und Hydrographie) for the north sea dataset, J. Boree and L.
Brizzi (Lab. d’Etudes Aérodynamiques de Poitiers) for the
PIV data set, the Fraunhofer IFF for providing the VDT ren-
dering system and T. Weinkauf and J. Martinez Esturo for
fruitful discussions. The work was partially funded by the
German Ministry of Education and Science (BMBF) within
the ViERforES project (no. 01IM08003C) and by the Sem-
Seg project under the EU FET-Open grant 226042.

References

[Bro04] BROWN R.: Animated visual vibrations as an uncertainty
visualisation technique. In Proc. GRAPHITE (2004), pp. 84—89.

[BWEO5] BOTCHEN R. P., WEISKOPF D., ERTL T.: Texture-
based visualization of uncertainty in flow fields. In IEEE Visual-
ization (2005), pp. 647-654.

[BWEO6] BOTCHEN R. P., WEISKOPF D., ERTL T.: Interactive
Visualization of Uncertainty in Flow Fields using Texture-Based
Techniques. In Proc. Intl. Symp. on Flow Visualization (2006).

[DKLP02] DiurciLov S., Kim K., LERMUSIAUX P. F. J,,
PANG A.: Visualizing scalar volumetric data with uncertainty.
Computers and Graphics 26, 2 (2002), 239-248.

[dLvL99a] DELEEUW W., VAN LIERE R.: Collapsing flow topol-
ogy using area metrics. In IEEE Visualization (1999), pp. 149—
354.

[dLvL99b] DE LEEUW W., VAN LIERE R.: Visualization of
global flow structures using multiple levels of topology. In Proc.
VisSym (1999), pp. 45-52.

[GR0O2] GRIGORYAN G., RHEINGANS P.: Probabilistic surfaces:
point based primitives to show surface uncertainty. In /EEE Vi-
sualization (2002), pp. 147-154.

[GS06] GRIETHE H., SCHUMANN H.: The visualization of un-
certain data: Methods and problems. In SimVis (2006), pp. 143—
156.

[Hal02] HALLER G.: Lagrangian coherent structures from ap-
proximate velocity data. Phys. Fluids A 14 (2002), 1851-1861.

[JohO4] JoHNSON C.: Top scientific visualization research prob-
lems. IEEE Comput. Graph. Appl. 24, 4 (2004), 13-17.

[JS03] JOHNSON C., SANDERSON A.: A next step: Visualizing
errors and uncertainty. [EEE Comput. Graph. Appl. 23,5 (2003),
6-10.

[LHZPO5] LARAMEE R., HAUSER H., ZHAO L., PosT F.:
Topology-based flow visualization, the state of the art. In Proc.
Topo-In-Vis (2005), pp. 1-20.

[LPSW96] LODHA S. K., PANG A., SHEEHAN R. E., WITTEN-
BRINK C. M.: Uflow: visualizing uncertainty in fluid flow. In
IEEE Visualization (1996), p. 249.

[MIW*07] MADDAH M., III W. M. W., WARFIELD S. K.,
WESTIN C.-F., GRIMSON W. E. L.: Probabilistic clustering and
quantitative analysis of white matter fiber tracts. In Proc. IPMI
(2007), vol. 20, pp. 372-383.

[PVH*03] PosT F., VROLIUK B., HAUSER H., LARAMEE R.,
DOLEISCH H.: The state of the art in flow visualization: Feature
extraction and tracking. Computer Graphics Forum 22,4 (2003),
775-792.

[PWL97] PANG A. T., WITTENBRINK C. M., LODHA S. K.:
Approaches to uncertainty visualization. The Visual Computer
13 (1997), 370-390.

[RLBS03] RHODES P. J., LARAMEE R. S., BERGERON R. D,
SPARR T. M.: Uncertainty visualization methods in isosurface
rendering. In Eurographics (2003), pp. 83-88.

[SJKO4] SANDERSON A. R., JOHNSON C. R., KIRBY R. M.:
Display of vector fields using a reaction-diffusion model. In
IEEE Visualization (2004), pp. 115-122.

[SPBO8] STREIT A., PHAM B., BROWN R.: A spreadsheet ap-
proach to facilitate visualization of uncertainty in information.
IEEE TVCG 14,1 (2008), 61-72.

[STSO07] ScHuLTZ T., THEISEL H., SEIDEL H.-P.: Topological
visualization of brain diffusion MRI data. IEEE TVCG 13, 6
(2007), 1496-1503.

[TSHOO] TRICOCHE X., SCHEUERMANN G., HAGEN H.: A
topology simplification method for 2D vector fields. In IEEE
Visualization (2000), pp. 359-366.

[TSHO1] TRICOCHE X., SCHEUERMANN G., HAGEN H.: Con-

tinuous topology simplification of planar vector fields. In IEEE
Visualization (2001), pp. 159 — 166.

[WSF*95] WITTENBRINK C. M., SAXON E., FURMAN J. J.,
PANG A., LODHA S.: Glyphs for visualizing uncertainty in en-
vironmental vector fields. In IEEE TVCG (1995), pp. 266-279.

[ZDG*08] ZuUK T., DOWNTON J., GRAY D., CARPENDALE S.,
LIANG J.: Exploration of uncertainty in bidirectional vector
fields. In Visualization and Data Analysis (2008), vol. 6809.

(© 2010 The Author(s)
Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.



