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Crease Surfaces: From Theory to Extraction
and Application to Diffusion Tensor MRI

Thomas Schultz, Holger Theisel, and Hans-Peter Seidel

Abstract—Crease surfaces are two-dimensional manifolds along which a scalar field assumes a local maximum (ridge) or a local
minimum (valley) in a constrained space. Unlike isosurfaces, they are able to capture extremal structures in the data. Creases have a
long tradition in image processing and computer vision, and have recently become a popular tool for visualization. When extracting
crease surfaces, degeneracies of the Hessian (i.e., lines along which two eigenvalues are equal) have so far been ignored. We show that
these loci, however, have two important consequences for the topology of crease surfaces: First, creases are bounded not only by a side
constraint on eigenvalue sign, but also by Hessian degeneracies. Second, crease surfaces are not, in general, orientable. We describe
an efficient algorithm for the extraction of crease surfaces which takes these insights into account and demonstrate that it produces more
accurate results than previous approaches. Finally, we show that diffusion tensor magnetic resonance imaging (DT-MRI) stream
surfaces, which were previously used for the analysis of planar regions in diffusion tensor MRI data, are mathematically ill-defined. As an
example application of our method, creases in a measure of planarity are presented as a viable substitute.

Index Terms—Height crease, ridge surface, valley surface, tensor topology, DT-MRI stream surface.

1 INTRODUCTION

LOCAL extrema are characteristic structures of scalar fields,
and are relevant in a wide variety of applications.
However, typical data sets assume unconstrained local
extrema only in isolated points. For cases in which higher
dimensional extremal features are more appropriate, there
exist crease definitions, which generalize local extrema:
Ridges generalize local maxima, while valleys generalize
local minima.

The crease definition considered in our work has been
introduced to visual computing by Haralick [13], who
suggested the use of creases to capture highlight and shadow
lines in natural images. Haralick defines creases as lines in a
2D image along which the first directional derivative, taken in
a direction which extremizes the second directional deriva-
tive, changes sign. This is known as the “height crease
definition,” since it is motivated by treating the intensity
profile of animage as a height field and is closely related to the
notion of ridges and valleys in surface topography.

Different crease definitions have been proposed and
there has been some dispute over which is the “correct” one
[19]. After a theoretical analysis and visual comparison of
results, Eberly et al. [9] conclude that height creases are
most suitable for digital image analysis. Their reformulation
of Haralick’s definition, which generalizes it to arbitrary d-
dimensional creases in n-dimensional images, will be
presented in Section 2.1.
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In the present work, we concentrate on 2D creases in 3D
space. This was motivated by the fact that crease surfaces
have recently received increasing attention as tools for
visualization and computer graphics [16], [32], [37], [27],
but have so far not been treated thoroughly from the
methodological side. In particular, Hessian degeneracies,
which have been neglected in previous algorithms for crease
surface extraction, have important consequences for the
topology of creases. Based on this insight, we propose an
efficient algorithm which produces more accurate represen-
tations of crease surfaces.

The remainder of this paper is organized as follows:
After providing a formal definition of height creases and
discussing related work (Section 2), we describe our
theoretical results on crease surface topology (Section 3).
We present our novel algorithm for crease surface extrac-
tion (Section 4) and demonstrate a clear improvement over
the state of the art (Section 5). Finally, we show that
diffusion tensor magnetic resonance imaging (DT-MRI)
stream surfaces [44] are ill-defined and propose crease
surfaces as a replacement to analyze planar regions in
diffusion tensor MRI visualization (Section 6), before we
conclude the paper (Section 7).

2 RELATED WORK

2.1 Definition of Height Creases

The formal definition of height creases given in this section
follows the idea of Eberly et al. [9], but adopts the simplified
notation used in [17]. Assume a C? scalar field f: R" — IR.
Let g =V/f be its gradient and H be its Hessian with
eigenvectors e; and eigenvalues \;, i € {1,2,...,n}, sorted
such that \; > --- > \,,. Then, a d-dimensional height ridge
is given by the conditions

Vici<n g-€ =0 A X <O0. (1)
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Intuitively, this means that f attains a local maximum in the
n — d directions of strongest convexity. For ridge surfaces in
IR?, this definition simplifies to

g-e3 = 0 A )\3 < 0. (2)

The valleys of f are exactly the ridges of —f, so they need
not be discussed separately.

2.2 Crease Extraction

Crease lines have been studied extensively by Pizer et al. in
the context of medial core extraction [29], which generalizes
the Blum medial axis analysis of binary objects [4] to finding
the core of objects in gray-scale images. Pizer et al. employ a
medial function, which yields high values at the center of an
object, and they extract its core as ridges in medial function
values. Lindeberg [20], whose formalism differs slightly from
the presentation above, and Damon [6] carefully investigated
the behavior of height creases in Gaussian scale space.

Crease lines have also been used for finding vortex cores in
vector field visualization, for example, by Miura and Kida
[23] and by Sahner et al. [33], and for the extraction of
characteristic lines in symmetric tensor fields by Tricoche et
al. [40]. In this context, the parallel vector approach by Peikert
and Roth [26] and the feature flow fields by Theisel and Seidel
[39] provide popular algorithms for crease line extraction.

For crease surfaces, Furst et al. have proposed the
“marching cores” algorithm [12], which addresses the
problem of finding 2D creases in a 4D (3D+scale) space.
In their “marching ridges” method [11], Furst and Pizer
even extend this to the extraction of one and two-
dimensional creases from spaces of arbitrary dimension.
To deal with such high complexity, they make simplifying
assumptions, such as that the boundary of each face is only
intersected twice by a ridge. Intersections are found as
changes of sign in g - e;, after imposing a local orientation
on e; via a principal component analysis (PCA).

Crease surfaces should not be confused with surface
creases, which are lines of extremal curvature on general
surfaces [3]. Methods for surface crease detection take a
surface as input, and produce salient lines on it as output.
Therefore, they are not applicable to our problem of finding
surfaces from sampled volume data.

So far, the application of ridge surfaces in visualization
has been restricted to single-scale analysis, so it has been
sufficient to find crease surfaces in 3D space. To find
skeletal structures in data from diffusion tensor MRI,
Kindlmann et al. [16] have extracted ridge surfaces as
isosurfaces of g - ; = 0, using the marching cubes algorithm
[21] after imposing a per-cell orientation on e; by tracking
eigenvectors along subsampled cell edges.

Sadlo and Peikert [32] have used marching cubes on an
adaptive grid to extract ridge surfaces which separate
regions of different flow behavior in unsteady vector fields,
using the original rule from [11] to orient eigenvectors.
Another recent work on vector field visualization by Sahner
et al. [34] has used crease surfaces, but employed a
different, watershed-based definition. In computer gra-
phics, Siifmuth and Greiner [37] used marching cubes to
reconstruct surface meshes from noisy point clouds by
extracting ridges of point cloud density. They use the height
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Fig. 1. (a) Orienting eigenvectors can lead to a contradiction. (b) Lines
along which g L e; end in degeneracies.

crease definition, but do not provide details on their way of
orienting eigenvectors.

In the following section, we will discuss differences
between the topology of isosurfaces and crease surfaces,
which show that the marching cubes case table is
inappropriate for crease extraction. This will lead us to a
novel algorithm which is specialized for the extraction of 2D
creases from 3D fields.

3 ON THE ToPOLOGY OF CREASE SURFACES

3.1 Terminology

This paper discusses “generic” (or “structurally stable”)
properties of crease surfaces. A formal definition of gener-
icity is given in [6]. In practice, generic properties are the ones
which we can expect to meet under general conditions and
which remain stable under small perturbations.

3.2 Degenerate Lines as Boundaries

Unit eigenvectors are only defined up to their sign.
However, previous algorithms for the extraction of crease
surfaces rely on a locally consistent sign of the involved
eigenvector, so prior work has suggested different ways to
impose a local orientation on it [25], [11], [16].

Unfortunately, orienting the eigenvector along the
boundary of a cell face is, in fact, impossible when the
Hessian has a degeneracy in the interior of the face, i.e., a
point at which two eigenvalues are equal: Delmarcelle and
Hesselink [7] have shown that the Poincaré indices of the
three generic types of degenerate points in tensor fields are
half-integers. This means that the eigenvector turns +3
times when traveling along a closed line around a
degenerate point in counterclockwise direction. This is
illustrated by Fig. 1a, which has a degenerate point (blue) at
the center and indicates eigenvector directions in the plane
around it by dashed blue lines. As indicated by the arrows,
trying to impose a consistent sign along the cell boundary
around the degeneracy (black) leads to a contradiction. This
case is not rare in practice: Degenerate loci in symmetric 3D
tensor fields generally form stable lines [6], [46].

In the context of crease surfaces, degenerate (also called
semiumbilic) locations have traditionally been discussed as
a source of numerical difficulty when imposing a local
orientation on eigenvectors (e.g., [25]). Only recently, it has
been pointed out that their presence implies that eigenvec-
tors are not orientable in principle [27]. To the best of our
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knowledge, it has so far not been discussed that degenerate
lines actually constitute one type of crease surface bound-
aries: Besides the obvious type of boundaries, which are
caused by the side constraint on the eigenvalue (A3 < 0 or
A1 > 0, respectively), ridge surfaces are bounded by type L
degenerate lines (A; = A3), and valley surfaces are bounded
by type P lines (A = A9).

For crease lines in 2D, this insight follows directly from
the Poincaré index of the degenerate point: Along the
boundary of an e-environment around it, the eigenvector
turns 4] times, while changes in the gradient can be
neglected for sufficiently small e. Thus, both vectors are
orthogonal (i.e., the crease intersects the boundary) exactly
once—the crease ends inside of it. Fig. 1b illustrates this:
Along the crease (orange), gradient vectors (gray) are
orthogonal to the eigenvectors (blue). Behind the degen-
erate point, both vectors are parallel, so the crease ends.

This argument carries over to crease surfaces in 3D by
projecting the gradient vector to the eigenplane of the
repeated eigenvalue (the part outside the eigenplane is
orthogonal to the relevant eigenvector anyway) and obser-
ving that generic 3D degenerate points behave just like 2D
degeneracies within that plane (as shown in [47]). This also
clarifies that, in general, crease surfaces do not branch, since
this would require degeneracies with index +3 + n,n € Ny,
which are not structurally stable in 3D.

Extracting the skeleton of a bifurcating structure as a
crease surface typically does not result in a nonmanifold
sheet. Rather, one part of the surface ends shortly before
meeting the other one. In our experience, it is exactly this
case in which degenerate lines occur as crease surface
boundaries most frequently in practice.

Note that corresponding results for crease lines in
Gaussian scale space have been obtained in the context of
medial cores by Damon [6], in a work which has not found
adequate attention in the visualization community: Among
other things, Damon proved that degenerate loci of
symmetric 3 x 3 matrices form stable lines in 3D (cf.
Propositions 8.1 and 9.1 in his work), which was later
rediscovered by Zheng and Pang [46].

3.3 Nonorientability of Creases
The fact that g - e; = 0 defines a surface with boundary even
before considering any further constraints introduces the
possibility that crease surfaces may not be orientable, i.e., it
may not, in general, be possible to assign a normal vector
field with consistent sign to a crease surface. This problem
has been encountered by previous authors [17], [32], but so
far, it has not been discussed whether it is a true property of
creases or merely a numerical artifact of existing extraction
techniques. Also, examples of nonorientable creases have
not been published so far.

Peikert and Sadlo [27] propose to extract crease surfaces
as subsets of the zero isosurface of a scalar measure

d = det(g|/Hg|HHg), (3)

which first appears in a work by Stifmuth and Greiner [37].
The fact that creases can be expressed as a filtered
isosurface suggests that they are orientable. However, the
scalar field d changes sign in an e-band around the crease
not only in normal direction, but also along the surface.
More precisely, d = 0 not only when g is orthogonal to the

(b)

(a) ()

Fig. 2. (a) Cutting this nonorientable ridge surface along the red and blue
lines yields orientable pieces. (b) and (c) Two nonorientable paths are
shown in detail.

selected eigenvector (e3 for ridges, e; for valleys), but to an
arbitrary eigenvector. Along parallel vector lines g || e;, g is
orthogonal to both remaining eigenvectors e; (j # i), so in
these places, the zero isosurface of d self-intersects—the
sign of d changes along the crease.

Fig. 2 presents a ridge surface from a real-world MRI
data set. In two places, marked by arrows, it shows surface
pieces which are homeomorphic to the Mobius strip. This
establishes the fact that nonorientability is, in fact, a true
property of creases. To give a better visual impression of the
nonorientability, Figs. 2b and 2c show closed paths (light
blue) along which the normal (red) cannot be oriented—at
the points marked by a red ball, a contradiction occurs. In
Fig. 2a, the parallel vector lines g || e; are shown in red,
g || e2 in blue, and type P degeneracies are shown as yellow
spheres. This illustrates that cutting the crease along these
lines would result in pieces that could be oriented using the
scalar d from (3).

4 EXTRACTION OF CREASE SURFACES

4.1 Basic Idea

From the observations made in the previous section, it
follows that marching cubes are not suitable for the
extraction of crease surfaces. Since isosurfaces are closed,
marching cubes only consider cases in which the boundary
of each cell face is intersected an even number of times. If
there really is an odd number of intersections (because the
crease ends inside the cell), applying the marching cubes
case table will either add spurious triangles or create a hole.
In existing algorithms, as used in [16] and [32], either of
these options happens at random.

Peikert and Sadlo [27] have proposed to solve this problem
by using marching cubes to extract a superset of creases and
filtering out irrelevant parts afterward. This is theoretically
appealing, but unfortunately, it is infeasible in practice, since
the marching cubes algorithm cannot handle the self-
intersections which occur in the zero isosurface of their scalar
field d. In fact, it follows from the nonorientability of crease
surfaces that it is generally not possible to close them in IR?
without introducing self-intersections.
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(a) (b) (©) (d ()

Fig. 3. Our algorithm creates the mesh per cell, by (a) and (b) finding
intersection points, (c) estimating normals, and (d) and (e) connecting
the points based on them.

The algorithm we propose instead is also based on cell
marching, but does not rely on the marching cubes case
table to determine topology. Fig. 3 gives an overview of our
pipeline: We first extract individual intersections of cell
edges with the crease surface (Fig. 3a) and of cell faces with
the degenerate lines which bound the crease (Fig. 3b). We
then estimate surface normals at these points (Fig. 3c) and
use them to select the most likely topology, both on the
faces (Fig. 3d) and within the cell (Fig. 3e). Taken together,
this leads to closed polygons over the boundary of each cell,
which can be triangulated to form the final mesh.

Without showing results, Eberly [8] has proposed a
similar strategy to extract 2D creases from 3D fields.
However, he assumes that the intersections of crease
surfaces with cell faces can be described as the zero contour
of a bilinear function. Like marching cubes, this does not
allow creases to terminate within a cell.

To keep the notation simple, we will restrict our
discussion to ridge surfaces. Valleys are obtained by
straightforward analogies or by extracting ridges of —f.

4.2 Finding Edge Intersections

Our algorithm makes extensive use of a differentiable
symmetric tensor field T(x) which is derived from the
Hessian field H(x) and has g(x) as an eigenvector to
eigenvalue 1 if and only if x is a point on the ridge. Its
eigenvectors €, and eigenvalues )] are defined from those of
the Hessian matrix (e; and \;) as

/o [ [
e =€, N :=1 X :=1,

0, if Ao — A3 >0

Xy = - 2
3 (1 - A2 7 >\3> , else.

This definition makes sure that T is a differentiable
function of H and that it remains well-defined as
(A2 = A3) — 0 and e3 becomes ill-conditioned. We assume
that this starts to play a role when (X, — \3) drops below a
threshold ¢, which we empirically fixed at 0.5 percent of the
dynamic range in our data. It is reasonable to count such loci
as being on the ridge regardless of g—as we have shown in
Section 3.2, they form one type of surface boundary.

To detect intersections of the ridge with cell edges, we
consider the vector

h(x) := T(x)g(x) — &(x), ()

which is zero if and only if x is a point on the ridge.
Otherwise, h indicates the direction in which the gradient
g moves when being projected onto the eigenplane of T
(Fig. 4a). Let h; and hy be the respective vectors at the

(4)
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Fig. 4. An intersection of g with the plane spanned by e; and e, is
detected by considering the difference vector h that results from
projecting g to the plane.
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endpoints of an edge. We assume that the ridge intersects
the edge if h; - hy < 0, i.e., if the gradient has changed from
one side of the eigenplane to the other (Fig. 4b). An
estimate of the point of intersection is given by the relative
magnitudes of h; and hy. This way of finding edge
intersections does not require to orient eigenvectors.

It may appear even easier to locate edge intersections by
bracketing zero crossings in the scalar d from (3). Unfortu-
nately, d often has very close pairs of zero crossings, of
which only one indicates a ridge and which are difficult to
find in practice. This happens near parallel vector lines
g || e;, for the reasons mentioned in Section 3.3.

4.3 Extracting the Boundary

To find the end points of the ridge on the cell faces, we
localize type L Hessian degeneracies via the gradient descent
proposed by Zheng and Pang [46]. We have augmented it
with an Armijo step-size selection [1] to improve its
convergence properties and repeat it from different starting
positions on the face in cases where it runs into local minima.
To save computations, this is only done on faces whose
boundary is intersected an odd number of times.

Each ridge that enters a face should either leave it again
or end in a type L degeneracy. It is important to ensure this
algorithmically to achieve a consistent final triangulation. If
no degeneracy is found, this typically means that we have
missed an edge intersection. In fact, edges along which T
varies strongly may be intersected multiple times. To
handle this, we bisect an edge if the values T and T, at
its endpoints differ too much. The exact condition used in
our current implementation is

tr(TTTy)
\/ tr(TTT,) - \/tr(T;sz)

where TT denotes transpose of T, tr is matrix trace, and © is
increased iteratively while the total number of intersections
is odd and no degeneracy has been found.

<0, (6)

4.4 Estimating Normals

The fact that h(x) = 0 for all points x on the surface allows
us to compute the surface normal at x. Directional
derivatives of h tangential to the surface are 0, so the
Jacobian Vh has rank one, with the only nonzero
eigenvector in normal direction. The fact that the normal
computed this way is only defined up to sign is not a
limitation, since the ridge surface is nonorientable anyway.

Since Vh = VTg + TVg — Vg involves the gradient of
T, which is, in turn, defined in terms of the Hessian, normal
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Fig. 5. (b) Despite the use of third derivatives, our analytic surface
normals appear smooth. For comparison, (a) shows normals estimated
from the mesh, as in [38].

estimation assumes that f is at least C* continuous. Despite
dealing with third derivatives and applying some computa-
tional simplifications (detailed in Section 4.6), we found that
the normals obtained this way are of reasonable quality and
can be used both for estimating local topology and for
rendering (cf. Fig. 5).

4.5 Generating the Mesh

Our theoretical analysis in Section 3 revealed two facts:
First, crease surfaces end at degenerate lines; second, they
may not be orientable. To reflect these insights, per-cell
processing has to concentrate on finding the lines that
bound the surface. Orientability, on the other hand, is a
global property, and will result automatically if we make
the correct per-cell decisions.

Consistency of the final mesh is guaranteed by estimat-
ing the connectivity per face, and sharing the results
between adjacent cells. Moreover, the boundary points are
connected pairwise per cell, and thus, form continuous lines
in the final mesh. As an example, Fig. 6 illustrates the case
discussed in Section 3.2, in which one part of a crease (red)
terminates just before it would meet another one (gray) in a
nonmanifold configuration. Since marching cubes does not
allow the surface to terminate within a cell, it produces a
zig-zag edge (Fig. 6a), even when using a finer resolution
(Fig. 6b). On the other hand, our method extracts a smooth
degenerate line which bounds the surface.

To estimate per-face connectivity, we connect the
extracted intersection points pairwise. Since the total
number of points per face is low, we simply enumerate all
possible pairings and exclude the ones that would lead to a
self-intersection (2D line-line intersection test). Among the
permissible options, we choose the one which agrees best
with the computed normals, i.e., the one which minimizes
the sum of absolute dot products of connection lines and
normals at their end points.

On each face, we extracted a degeneracy if and only if its
boundary was intersected an odd number of times. Since
edges are shared between adjacent faces, this leads to an even
number of degenerate points per cell, which are connected in
a similar manner. In rare cases, a cell has more than two
degenerate points. In that case, we use the quads defined by
any pair of degenerate points and their respective neighbors

(a) (b) (©)

Fig. 6. Unlike (a) marching cubes and (b) marching cubes at double
resolution, (c) our method creates a smooth representation of crease
surfaces that terminate at degenerate lines.

on the face to check for self-intersections (3D triangle-triangle
intersection tests after arbitrary subdivision).

After these steps, each cell contains a set of closed
polygons (cf. Fig. 3e). Triangles are used as is, and quads are
subdivided arbitrarily. We triangulate larger polygons via a
triangle fan with an additional vertex at the barycenter.

4.6 Implementation

Trilinear interpolation is widely used for its computational
efficiency. Since creases require C? continuity, more ad-
vanced interpolation becomes obligatory. Like Kindlmann
et al. [17], we convolve the given sample points with a C?
cubic B-spline kernel. However, we store the resulting values,
gradients, and Hessians at each grid point and interpolate
them trilinearly in between. A very similar approximation is
made when using the Phong shading model [28], which
interpolates surface position and normal independently.

We found that this approximation greatly speeds up the
bisection of edges and the iterative search for degenerate
points on faces, while the resulting changes to the crease are
on the order of a small additive Gaussian perturbation of f.
Even approximating third derivatives by taking finite
differences in the trilinearly interpolated Hessian field did
not introduce any notable artifacts in the resulting normals.
Note that this choice is an implementation detail which could
be changed without having to alter any part of the algorithm.

Our extraction algorithm only produces exact bound-
aries where the ridge ends at a degenerate line. The side
constraint (A3 < 0) is taken into account by excluding cells
for which no vertex meets the constraint. This causes zig-
zag boundaries, which are straightened by triangle trim-
ming in a postprocess. This choice was motivated by the
fact that crease surfaces are typically filtered using applica-
tion-specific rules anyway, so both tasks are easily
combined. Moreover, it avoids complex special cases that
would otherwise occur in the extraction when the two types
of boundaries meet.

4.7 Rendering

On modern graphics hardware, it is straightforward to
render nonoriented surfaces, simply by discarding the sign
of the normal in the lighting computation. As an example,
let n denote the surface normal, 1 the vector toward the light
source. The diffuse term in the Phong shading model [28]
usually involves max{n-1,0}. To render nonoriented
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(© (d

Fig. 7. At the original data resolution, (c) the proposed algorithm for
crease extraction provides much better results than (a) marching cubes
with eigenvector tracking and (b) marching cubes with PCA. For
comparison, (d) shows results from eigenvector tracking at double
resolution.

surfaces, we simply replace this expression with |n -1/ in a
vertex shader program [31].

5 ResuLTs

5.1 Setup and Qualitative Results

To validate our method, we extracted boundary ridges in a
volume data set from a CT scan of a teddy bear. We chose
this data set because the bear is composed from different
materials, which makes it difficult to extract using simple
isosurfacing. We resampled the data set to 118 x 118 x 105
cells with isotropic edge length [ =3 mm. To detect the
boundaries, we computed the gradient magnitude by
convolution with the directional derivative of Gaussian
kernels at o = 3.3 mm. From the resulting data set, we then
extracted height ridges at the data grid resolution using the
proposed method, and compared them to results of
marching cubes, using both eigenvector tracking (as in
[17]) and PCA (as in [32]) as a preprocess.

All previous authors have found it necessary to filter out
noise-related parts of creases. Like Haralick [13], we used a
threshold on the ratio of gradient magnitude over A3 to
restrict the ridge to its most salient part. Moreover, we put a
threshold on absolute value and performed connected
component analysis to remove a background object present
in the data set. As shown in Fig. 7, the visual impression of
our result (c) is clearly better than the ones from marching
cubes at the same resolution.

Eigenvector tracking cannot process cells in which any
edge is near a type L Hessian degeneracy. These skipped
cells lead to the large number of small holes in (a). PCA
processes all cells, but fails to find a consistent orientation in
the presence of Hessian degeneracies or large eigenvector
variations. This leads to the spikes and holes in (b). The
degeneracies which cause these problems run through the
same cells as the affected parts of the bear, but belong to the
surfaces that end in the vicinity of the bear and are filtered
out during postprocessing. Since the effect of Hessian
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TABLE 1
Timings and Triangle Counts, Including Filtering
Method Time (s) | #triangles

evec tracking 24+1 66,662

evec tracking (2x res.) 180+4 578,489

PCA 18+2 201,068

proposed method 38+3 246,040
TABLE 2

Mean Absolute and RMS (in Italics) Error in Face Position,
as Measured by a Gradient Descent

Method area error (mm)
evec tracking 0.21m? | 0.02 (0.14)
PCA 0.49m? | 0.07 (0.31)
proposed method | 0.47m? | 0.02 (0.13)

degeneracies is not controlled in previous methods, they
can affect any surface that intersects the cell. This problem
can be mitigated by refining the extraction grid, which makes
itless likely that a degeneracy of a “noise” ridge runs through
the same cell as a legitimate ridge we would like to keep.

Previous authors have exploited this: Sadlo and Peikert
[32] propose an adaptive refinement around the crease, and
Kindlmann et al. [17] globally use a grid which is by factor 5
finer than the data grid. Indeed, at twice the original
resolution, marching cubes with eigenvector tracking pro-
duce a result which looks comparable to ours (d). However,
adaptive refinement cannot avoid ragged crease boundaries
(cf. Fig. 6 and Table 3), leading to overtesselation and coming
at considerable computational expense (cf. Table 1).

5.2 Quantitative Results

Table 1 presents algorithm performance, in terms of
consumed wall time (on a 2 GHz laptop) and generated
geometry. It shows that the improved accuracy of our
algorithm comes at moderate additional computational
expense. In particular, it is more than four times faster
than marching cubes on the refined grid, the only
alternative that provides acceptable quality.

Moreover, we conducted two quantitative experiments
which support the observations from the previous section.
First, we evaluated the accuracy of the extracted surfaces by
taking a large number of samples from the mesh (1.5 mm~?,
uniformly at random), and measuring the distance to the
nearest point on the crease, as found by a gradient descent
in the direction which minimizes the squared norm |h|® of
h from (5). This gradient descent is only used for
evaluation, not during crease extraction. Table 2 lists the
resulting average absolute and root-mean-square (RMS, in
italics) distances. It clearly shows the increased error of the
PCA result, which is due to erroneous triangles. The table
also lists the total area of the bear, illustrating the fact that
eigenvector tracking only reconstructs part of the surface.

In a second experiment, we considered the boundary
components of the meshes and created a histogram of their
length in terms of individual edges. The results in Table 3
show that marching cubes produce small holes in the surface.
In particular, eigenvector tracking at both resolutions misses
a large number of single triangles, due to skipped cells.
Vertices in which more than two boundary edges meet are an



SCHULTZ ET AL.: CREASE SURFACES: FROM THEORY TO EXTRACTION AND APPLICATION TO DIFFUSION TENSOR MRI 115

TABLE 3
Marching Cubes Produces a Large Number of Spurious Short
Boundary Components on Crease Surfaces

Bdy components of length

Method 3 4 5 6 | >6
evec tracking 2158 | 59 | 408 | 69 | 353
evec tracking (2x res.) | 2277 | 97 | 469 | 80 | 533
PCA 44 |31 | 20 | 67 | 923

proposed method 0 10 0 0 | 136

indicator of spurious holes. In eigenvector tracking at the
original resolution, more than 7 percent of all boundary
vertices are affected. In marching cubes with PCA, it is
slightly less than 1 percent; in our proposed method, such
configurations do not occur by design. Note that many of the
longer boundary components are a consequence of the fact
that the crease also represents the stuffing of the bear.

For further validation, it would have been ideal to
implicitly represent a known surface as a crease and to
compare the mesh extracted from the resulting scalar field
to the initial ground truth. Unfortunately, it is not obvious
how to transform a surface to a well-defined height crease,
and to the best of our knowledge, this topic has not been
addressed in the literature.

6 APPLICATION TO DIFFusioN TENSOR MRI

Diffusion tensor magnetic resonance imaging is a medical
imaging modality for noninvasive investigation of nerve
fiber tracts in the human brain ([2], cf. [30] for a recent
overview). In each voxel, DT-MRI estimates a diffusion
tensor, a symmetric 3 x 3 matrix which models the
Brownian motion of water molecules. Since this motion is
restricted by nerve fibers, the main diffusion direction can
be taken as an estimate of fiber direction in voxels where a
single orientation prevails.

A standard way to visualize DT-MRI data is to integrate
streamlines which are everywhere tangential to the princi-
pal eigenvector of the tensor field and are interpreted as
estimated fiber pathways [24]. However, this method is
inappropriate for regions where fiber tracts cross or fan out,
since the diffusion tensor becomes planar, i.e., its larger two
eigenvalues are similar in magnitude, and there is no single
preferred direction.

To transfer the idea of streamlines to such areas, Zhang et
al. [44] proposed to integrate stream surfaces, which are
everywhere tangential to the plane spanned by the major and
medium eigenvectors. They included the important caveat
that this definition relies on the assumption that the Lie
bracket of the involved eigenvector fields lies within their
common plane. They considered it overly complex to verify
that assumption, but stated that it would likely be fulfilled,
since they did not experience problems in practice. Follow-up
work [36], [41] has extended the original algorithm, but did
not try to verify the condition on which it is founded.
Currently, stream surfaces are frequently mentioned as a
standard tool for DT-MRI visualization (cf. [45], [42], [30]).

In this section, we show that stream surfaces are, in fact,
ill-defined: In typical DT-MRI data, there do not exist
surfaces which are everywhere tangential to the plane

(a) (b)

Fig. 8. (a) In stream surface extraction, vertices are added radially from
the seed, breadth first. If the surface were well-defined, the algorithm
would not depend on this particular order, and the red and blue lines in
(b) would coincide.

spanned by the major and medium eigenvectors. Conse-
quently, stream surfaces do not have a clear interpretation,
since their shape is strongly influenced by arbitrary choices
in their extraction.

In a second step, we use the notion of height creases to
propose an alternative, well-defined set of surfaces to
visualize planar regions of DT-MRI data, and employ our
algorithm to extract them.

6.1 DT-MRI Stream Surfaces Are llI-Defined

The algorithm in [44] extracts stream surfaces by growing a
mesh of equilateral triangles from a given seed point. Zhang
et al. perform the integration along the edges which are
marked by arrows in Fig. 8a, but this choice is arbitrary.
Their integrability condition in terms of the Lie bracket has
an alternative formulation which is much easier to check in
practice: If the surface resulting from their algorithm is
well-defined, finding the position of a vertex by integrating
along any other path in the mesh should produce the same
result. In particular, integration along cycles should return
to the initial position.

To test this, we integrated cycles along the n-rings n €
{1,...,10} around the seed point. Integration started at a
vertex of the previously extracted stream surface and the
first step was made in the direction of its neighbor on the n-
ring in the counterclockwise direction. Further integration
was carried out in the plane spanned by the minor
eigenvector and the “incoming” vector of the previous
step, using the exact rule from [44]. After each nth step, we
turned the incoming vector 60 degree to the left within the
current tangent plane.

If the rule for surface integration were well-defined, the
resulting trajectory should coincide with the corresponding
n-ring on the surface. Fig. 8b shows that this condition is
violated: On the presented stream surface (gray), the n-rings
are shown in blue. Our trajectories, which clearly depart
from the surface, are red. Since we made conservative
choices for step size (one-fifth of a cell edge length) and
numerical integration scheme (fifth-order Runge-Kutta at
64-bit floating-point precision), such strong differences in
such a small neighborhood cannot be explained by
numerical errors. Also, integration was limited to a domain
where the second eigenvalue was much larger than the
third, so degeneracies have not played a role.

The algorithm in [44] expands the surface breadth-first,
so adjacent vertices are integrated along similar paths. In
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our experience, the algorithm becomes unstable when this
order is changed to depth-first, which should not be the
case if the surface were well-defined. Moreover, when
allowing for holes in the surface (as in [41]), highly
deformed triangles occur when a boundary component is
closed and vertices whose integration paths had departed
for some time become adjacent again.

Effectively, stream surface integration tries to find a
surface which is everywhere perpendicular to the minor
eigenvector field. In computer vision, it is a well-studied
problem that such surfaces only exist for vector fields
whose derivatives obey a specific symmetry [10]: In shape
from shading, an estimated normal field is used to infer
surface geometry. In this context, there exist various
strategies to deal with “nonintegrable” vector fields (cf. [5]
and references therein). While it appears possible to avoid
the above-mentioned algorithmic problems by adopting
such methods, we feel that interpretation of the resulting
surfaces would be unclear.

We would like to emphasize that our result does not
affect stream surfaces in the sense in which they are
traditionally defined in vector field visualization (i.e., as a
surface which is traced out by a given seed line when
advected along the field). Stream surfaces in this well-
defined sense have been used for tensor field visualization
by Jeremic et al. [14]. Sondershaus and Gumhold [36] even
decide to call the “stream surfaces” in the context of DT-
MRI “diffusion surfaces” to avoid confusion of these
different definitions.

6.2 Planarity Ridges for DT-MRI Visualization

Our proposed substitute for stream surfaces in DT-MRI is
closely related to the anisotropy creases which were used by
Kindlmann et al. [16] to delineate the skeleton of white
matter structures and have been shown to produce
repeatable results over a range of subjects [17].

Kindlmann et al. extract ridges of fractional anisotropy
(FA), a scalar measure which quantifies the overall
directional dependance of diffusion. To investigate only
planar regions, we replace FA with ¢, a specific measure of
planarity introduced by Westin et al. [43]

2(A2 — A3)

= 7
“ M+ X+ A3 ()

Extracting creases of ¢, requires formulas for the first and
second partial derivatives of ¢,, which are derived in the
appendix of this paper. To avoid problems at degeneracies,
at which sorted eigenvalues may not be differentiable, we
employ the regularized eigenvalue derivatives from [35].
Fig. 9 compares ridges in FA and ¢, in a frontal view of
an example data set (DT-MRI data with 93 x 116 x 93
voxels, isotropic edge length 1.72 mm). Gaussian prefilter-
ing with 0 = 1.72 mm was used and the ridges were filtered
to areas with FA > 0.2 (Fig. 9a) and ¢, > 0.2 (Fig. 9b),
respectively. Note that different color schemes are used:
Fig. 9a employs standard RGB-XYZ coloring of the major
eigenvector, while Fig. 9b color codes the minor eigenvector
(e.g., red denotes fanning perpendicular to the x-axis), since
no principal direction may be defined in planar regions.
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(b)

Fig. 9. Unlike ridges in FA (a), ridges in ¢, (b) specifically illustrate the
cores of planar regions. Therefore, they are a suitable replacement for
the ill-defined stream surfaces.

As expected, ridges in ¢, show the cores of planar
regions: They capture the fanning in the corona radiata (CR)
and the cerebellar peduncles (CP), the crossing at the
decussation of the superior cerebellar peduncle (DSCP), and
due to partial voluming, interfaces between corpus callosum
and cingulum (CC/Cing), as well as between corticospinal
tract and pontine crossing tract (CST/PCT). In comparison,
the FA ridge (Fig. 9a) also includes structures with linear
diffusion, like the CC, Cing, CST, and PCT. Unlike stream
surfaces, planarity ridges cannot be integrated from arbi-
trary positions, which alleviates issues of seeding and
culling. Their parameters are scale (amount of presmooth-
ing) and a threshold for postfiltering.

Our novel algorithm for crease extraction facilitates the
processing of full-brain DT-MRI scans at the original
resolution: Fig. 9a was extracted on the original data grid
within 26 s, while Kindlmann et al. [17] report 6 minutes
even after subsampling their data by a factor of two (i.e., to
48 x 48 x 28 voxels), mainly due to the fact that they had to
use an extremely fine extraction grid. Despite the fact that
as a nonlinear function, FA has higher spatial frequency
than the underlying tensor field itself [17], direct visual
comparison between creases extracted from the approxima-
tion in Section 4.6 and ones from exact derivatives did not
reveal any notable differences.
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Fig. 10. Merging the planarity ridge with semitransparent streamlines
made it easier to recognize the anatomical relevance of its components
in this medial view.

6.3 Evaluation of Planarity Ridges

For evaluation, we presented our planarity ridges to a
neuroscientist. In this process, we found it helpful to add
further anatomical context. We added streamlines from
fiber tracking [24], which we rendered semitransparently to
mitigate problems with occlusion. Moreover, we seeded
superquadric glyphs [15] on the surface.

Fig. 10 shows an overview of the left hemisphere, seen
from a medial cutting plane. The fused rendering with the
streamlines allowed our collaborator to confirm our
annotations from Fig. 9b and, in addition, to identify planar
regions corresponding to the interfaces between anterior
thalamic projections and corticospinal tract (ATP/CST), as well
as between internal capsule and putamen (IC/Put). Within the
precuneus, the planarity ridge exhibits some characteristic
dents (red arrows). In this region, the planarity is due to the
fanning of the corona radiata (CR) and to its intersection with
the SLF III, a component of the superior longitudinal
fasciculus. 1t is weaker in places where fiber bundles run,
in a more coherent manner, into one of the cortical gyri.

To get a more detailed view on a part of the planarity
ridge, Fig. 11 presents a closeup of the right hemisphere,
near the lateral sulcus. The annotated tracts in Fig. 11a are
the superior longitudinal fasciculus (SLF) which intersects
with the transcallosal fibers (TF) and the short association fibers
(SF), the subinsular white matter (SI), the inferior fronto-
occipital fasciculus (IFO) which intermingles with the
uncinate fasciculus (Unc), as well as the inferior longitudinal
fasciculus (ILF).

The superquadric glyphs in Fig. 11b confirm that the
planarity ridges in this region capture the intersection of SLF
with TF and SF, and the bifurcation of IFO and Unc.
Moreover, a planar region exists in the external/extreme
capsule (EC), where the tracts of the subinsular white matter
(SI) originate. For our evaluation needs, we found it sufficient
to place the glyphs via a simple stratified surface sampling. If
desired, a more even distribution could be achieved by
implementing glyph packing [18] on the surfaces.

IFO/Unc

(b)

Fig. 11. (a) Besides using streamlines, (b) seeding superquadric glyphs
on the surface helped to identify planarity ridges in this lateral closeup.

7 CONCLUSION

Crease lines have a long tradition in image processing and
computer vision. We are convinced that once crease
surfaces, which constitute their two-dimensional general-
ization, are fully understood and reliable numerical
methods are available for their extraction, they will also
offer a versatile visualization tool, both to capture bound-
aries which cannot be characterized as isosurfaces and to
extract object cores or skeletal structures.

Our work has promoted this research goal by clarifying
the topological properties of crease surfaces and proposing
anovel algorithm for their extraction, which we have shown
to be more reliable than existing methods. The transformed
Hessian approach in Section 4.2 provides a unified frame-
work for detection of crease surface intersections, estimation
of surface normals, and for a gradient descent to the crease
surface, without the need to orient eigenvectors.

A second contribution of our work is to demonstrate
that the so-called stream surfaces, which have been
considered as a standard tool for DT-MRI visualization,
are mathematically ill-defined and should not be used. As
a well-defined alternative, we propose planarity ridge
surfaces for the visual analysis of planar regions. Our new
algorithm is crucial for their extraction on full-brain data
sets at original resolution.

Prior work has shown that visualizing creases at a single
scale can already provide valuable insights [16], [32].
However, to fully harness the potential of creases, we
would like to take their scale space behavior into account.
This requires the extraction of surfaces from a four-
dimensional space, which is an aspect beyond the scope
of this work. However, understanding crease surfaces in 3D
is a necessary first step toward that more complex goal.

APPENDIX
PARTIAL DERIVATIVES OF c,

To extract creases of ¢, (7), we need to find its first and
second partial derivatives with respect to the tensor field.
Without loss of generality, we only consider ¢, := % and
Cpay = gT—SZ According to the quotient rule, they are given
as

A A,B— AB,
Cpax = E’ Cpay = T’
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with

A=2X(Aow — Asz) + 200 (A1 — 2X3,)
+ 223 (A1e + 2X0),
Ay =2X (Mogy — Asay) + 200 (= A1 ay — 2X3,4y)
+ 223 (A1 0y + 2)\2413/) + 2y ()\Q,m —sz)
+ 2>\2,y<_)\1‘x - 2)\3,z) +2X3, ()\1,.75 + 2)\2@),
B=(\+X+N),
By =2(M + X+ )‘3)()‘1,1/ + Aoy + )‘ii«,y)'

First partial eigenvalue derivatives \;, are found by
rotating the corresponding tensor derivative D, to the
eigenframe of the original tensor D (cf. [35] for treatment of
repeated eigenvalues). Second partial eigenvalue deriva-
tives \;,, are given by rotating the second partial tensor
derivative D,,, to the same frame, but additionally require a
correction based on first eigenvector derivatives e;,. Let I
denote the identity matrix and T* the Moore-Penrose
inverse of T. Then, [22]

)\i,r - e;rDrei’
e, =N —D)'D,e;,

T T T
Nigy =€, Dyye; +e Dye, +e Dye,.
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