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Abstract—Visual exploration of multivariate data typically requires projection onto lower-dimensional representations. The number of
possible representations grows rapidly with the number of dimensions, and manual exploration quickly becomes ineffective or even
unfeasible. This paper proposes automatic analysis methods to extract potentially relevant visual structures from a set of candidate
visualizations. Based on features, the visualizations are ranked in accordance with a specified user task. The user is provided with a
manageable number of potentially useful candidate visualizations, which can be used as a starting point for interactive data analysis.
This can effectively ease the task of finding truly useful visualizations and potentially speed up the data exploration task. In this paper,
we present ranking measures for class-based as well as non class-based scatterplots and parallel coordinates visualizations. The
proposed analysis methods are evaluated on different datasets.

Index Terms—Dimensionality reduction, quality measures, scatterplots, parallel coordinates.
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1 INTRODUCTION

D UE to the technological progress over the last decades,
today’s scientific and commercial applications are capa-

ble of generating, storing, and processing large and complex
data sets. Making use of these archives of data provides new
challenges to analysis techniques. It is more difficult to filter
and extract relevant information from the masses of data since
the complexity and volume has increased. Effective visual
exploration techniques are needed that incorporate automated
analysis components to reduce complexity and to effectively
guide the user during the interactive exploration process.

The visualization of large complex information spaces
typically involves mapping high-dimensional data to lower-
dimensional visual representations. The challenge for the ana-
lyst is to find an insightful mapping, while the dimensionality
of the data, and consequently the number of possible mappings
increases. For an effective visual exploration of large data
sources, it is therefore essential to support the analyst with
Visual Analytics tools that help the user in finding relevant
mappings by providing an automated analysis. One important
goal of Visual Analytics, which is the focus of this paper, is to
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generate representations that best show phenomena contained
in the high-dimensional data like clusters and global or local
correlations.

Numerous expressive and effective low-dimensional visu-
alizations for high-dimensional datasets have been proposed
in the past, such as scatterplots and scatterplot matrices
(SPLOM), parallel coordinates, hyper-slices, dense pixel dis-
plays and geometrically transformed displays [1]. However,
finding information-bearing and user-interpretable visual rep-
resentations automatically remains a difficult task, since there
could be a large number of possible representations. In addi-
tion for us it could be difficult to determine their relevance to
the user. Instead, classical data exploration requires the user to
find interesting phenomena in the data interactively by starting
with an initial visual representation. In large scale multivariate
datasets, sole interactive exploration becomes ineffective or
even unfeasible, since the number of possible representations
grows rapidly with the number of dimensions. Methods are
needed that help the user to automatically find effective and
expressive visualizations.

In this paper we present an automated approach that sup-
ports the user in the exploration process. The basic idea is to
either generate or use a given set of candidate visualizations
from the data and to automatically identify potentially relevant
visual structures from this set of candidate visualizations.
These structures are used to determine the relevance of each
visualization to common predefined analysis tasks. The user
may then use the visualization with the highest relevance as the
starting point of the interactive analysis. We present relevance
measures for typical analysis tasks based on scatterplots and
parallel coordinates. The experiments based on class-based
and non class-based datasets demonstrate the potential of our
relevance measures to find interesting visualizations and thus
speed up the exploration process.
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2 RELATED WORK

In the last years several approaches for selecting good views
of high-dimensional projections and embeddings have been
proposed. One of the first was the Projection Pursuit [2], [3].
Its main idea is to search for low-dimensional (one or two-
dimensional) projections that expose interesting structures of
the high-dimensional dataset, rejecting any irrelevant (noisy or
information-poor) dimensions. To exhaustively analyze such a
dataset using low-dimensional projections, Asimov presented
the Grand Tour [4] that supplies the user with a complete
overview of the data by generating sequences of orthogonal
two-dimensional projections. The problem with this approach
is that an extensive exploration of a high-dimensional dataset
is effortful and time consuming. A combination of both
approaches, Projection Pursuit and the Grand Tour, is proposed
in [5] as a visual exploration system. Since then, different
Projection Pursuit indices have been proposed [6], [3], but only
a few of these techniques consider possible class information
of the data.

As an alternative to Projection Pursuit, the Scagnos-
tics method [7] was proposed to analyze high-dimensional
datasets. Wilkinson presented more detailed graph-theoretic
measures [8] for computing the Scagnostics indices to detect
anomalies in density, shape and trend. These indices could also
be used as a ranking for scatterplot visualizations depending on
the analysis task. We present an image-based measure for non-
classified scatterplots in order to quantify the structures and
correlations between the respective dimensions. Our measure
could be used as an additional index in a Scagnostics matrix.

Koren and Carmel propose a method of creating interest-
ing projections from high-dimensional datasets using linear
transformations [9]. Their method integrates the class decom-
position of the data, resulting in projections with a clearer
separation between the classes.

Another important visualization method for multivariate
datasets is parallel coordinates. parallel coordinates was first
introduced by Inselberg [10] and is used in several tools,
e.g. XmdvTool [11] and VIS-STAMP [12], for visualizing
multivariate data. It is important for parallel coordinates to
decide the order of the dimensions that are to be presented
to the user. Aiming at dimension reordering, Ankerst et al.
[13] presented a method based on similarity clustering of
dimensions, placing similar dimensions close to each other.
Yang [14] developed a method to generate interesting pro-
jections also based on similarity between the dimensions.
Similar dimensions are clustered and used to create a lower-
dimensional projection of the data.

In [15] Guo also addresses ways to integrate visual and
computational measures for picking and ordering variables for
display on parallel coordinates. He describes a human-centered
exploration environment, which incorporates a coordinated
suite of computational and visualization methods to explore
high-dimensional data and find patterns in this spaces. The
main difference between this approach and our approach is
that Guo searches for locally defined patterns in subspaces
and our work concentrates on finding global patterns in a 2-
dimensional projection of the dataset.

The approach most similar to ours is Pixnostics, proposed
by Schneidewind et al. [16]. They also use image-analysis
techniques to rank the different lower-dimensional views of the
dataset and present only the best to the user. The method does
not only provide valuable lower-dimensional projections to
the user, but also optimized parameter settings for pixel-level
visualizations. However, while their approach concentrates on
pixel-level visualizations as Jigsaw Maps and Pixel Bar Charts,
we focus on scatterplots and parallel coordinates.

Parallel to our work [17] Sips et al. [18] developed a
class consistency visualization algorithm. Similar to ours, the
class consistency method proposes measures to rank lower
dimensional representations. It filters the best scatterplots
based on their ranking values and presents them in an ordinary
scatterplot matrix. Additional to the measure for non-classified
scatterplots, we also propose three measures for classified
scatterplots as an alternative to [9] and [18]. Our measures first
select the best projections of the dataset and therefore have the
advantage, over embeddings generated by linear combination
of the original variables, that the orthogonal projection axes
can be more easily interpreted by the user.

As an alternative to the methods for dimension reordering
for parallel coordinates we propose a method based on the
structure presented on the low-dimensional embeddings of
the dataset. Three different kinds of measures to rank these
embeddings are presented in this paper for class and non-class
based visualizations.

3 OVERVIEW AND PROBLEM DESCRIPTION

Increasing dimensionality and growing volumes of data
lead to the necessity of effective exploration techniques
to present the hidden information and structures of high-
dimensional datasets. For supporting visual exploration,
the high-dimensional data is commonly mapped to low-
dimensional views. Depending on the technique, exponentially
many different low-dimensional views exist, which cannot be
analyzed manually.

Scatterplots are a commonly used visualization technique
to deal with multivariate datasets. This low-dimensional em-
bedding of the high-dimensional data in a 2D view can be
interpreted easily, especially in the most common case of
orthogonal linear projections. Since there are n2−n

2 different
plots for a n-dimensional dataset in a scatterplot matrix,
an automatic analysis technique to preselect the important
dimensions is useful and necessary.

Parallel coordinates is another well known and widely used
visualization method for multivariate datasets. One problem
of this kind of visualization is the large number of possible
arrangements of the dimension axes. For a n-dimensional
dataset it has been shown, that n+1

2 permutations are needed
to visualize all adjacencies, but there are n! possible arrange-
ments. An automated analysis of the visualizations can help in
finding the best visualizations out of all possible arrangements.
We attempt to analyze the pairwise combinations of dimen-
sions which are later assembled to find the best visualizations,
reducing the visual analysis to n2 visualizations.
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Fig. 1. Working steps to get a ranked set of good
visualizations of high-dimensional data.

Some applications involve classified data. We have to take
this property into account when proposing our ranking func-
tions. When dealing with unclassified data, we search for
patterns or correlations between the data points. This might
reveal important characteristics that can be of interest to the
user. In order to see the structure of classified data, it is
necessary for the visualizations to separate the clusters or at
least to have a minimal overlap. The greater the number of
classes, the more difficult the separation.

Data

Scatterplots Parallel Coordinates

Unclassified Data

Classified Data

Unclassified Data

Classified Data

Rotating Variance Measure
(Section 4.1)

Class Density Measure
Class Separating Measure

Histogramm Density Measure
(Section 4.2)

Hough Space Measure
(Section 5.1)

Similarity Measure
Overlap Measure

(Section 5.2)

Fig. 2. Overview and classification of our methods. We
present measures for scatterplots and parallel coordi-
nates using classified and unclassified data.

In our paper we describe ranking functions that deal with
visualizations of classified and unclassified data. An overview
of our approach is presented in Figure 1. We start from
a given multivariate dataset and create the low-dimensional
embeddings (visualizations). According to the given task,
there are different visualization methods and different ranking
functions that can be applied to these visualizations. The
functions can measure the quality of the views and provide a
set of useful visualizations. An overview of these techniques
is shown in Figure 2. For scatterplots on unclassified data, we
developed the Rotating Variance Measure which favors xy-
plots with a high correlation between the two dimensions. For
classified data, we propose measures that consider the class
information while computing the ranking value of the images.
For scatterplots we developed three methods, a Class Density
Measure, a Class Separating Measure and a Histogram Den-
sity Measure. They have the goal to find the best scatterplots
showing the separating classes. For parallel coordinates on
unclassified data, we propose a Hough Space Measure, which
searches for interesting patterns such as clustered lines in the
views. For classified data, we propose two measures: 1. the
Overlap Measure that focuses on finding views with as little
overlap as possible between the classes, so that the classes

separate well, 2. the Similarity Measure, which looks for
correlations between the lines. The measures are computed
directly over the visualization images and, in this first version,
do not consider possible over-plotting in the images.

We choose correlation search in scatterplots (Section 4.1)
and cluster search (i.e. similar lines) in parallel coordi-
nates (Section 5.1) as example analysis tasks for unclassified
datasets. If class information is given, the tasks are to find
views, where distinct clusters in the dataset are also well
separated in the visualization (Section 4.2) or show a high
level of inter- and intraclass similarity (Section 5.2).

4 QUALITY MEASURES FOR SCATTERPLOTS
Our measures aim to assess firstly the density and secondly
the separateness of classes in the distribution of the data. In
Section 4.1 we propose analysis functions assessing density
of the classes and Section 4.2 describes methods for assessing
the separateness of classes. In the case of unclassified, but well
separable data, class labels can be automatically assigned using
clustering algorithms [19], [20], [21].

4.1 Scatterplot Measures for unclassified data
4.1.1 Rotating Variance Measure
High correlations are represented as long, skinny structures in
the visualization. Due to outliers even almost perfect correla-
tions can lead to skewed distributions in the plot and attention
needs to be paid to this fact. The Rotating Variance Measure
(RVM) is aimed at finding linear and nonlinear correlations
between the pairwise dimensions of a given dataset.

First we transform the discrete scatterplot visualization into
a continuous density field. For each screen pixel s and its
position x= (x,y) the distance to its k-th nearest sample points
Ns in the visualization is computed. To obtain an estimate of
the local density ρ at a pixel s, we define ρ = 1/r, where r is
the radius of the enclosing sphere of the k-nearest neighbors
of s given by

r = maxi∈Ns ||x−xi||. (1)

Choosing the k-th neighbor instead of the nearest eliminates
the influence of outliers. k is chosen to be between 2 and
n− 1, so that the minimum value of r is mapped to 1. We
used k = 4 throughout the paper. Other density estimations
could of course be used as well.

Visualizations containing high correlations should generally
have corresponding density fields with a small band of larger
values, while views with lower correlation should have a
density field consisting of many local maxima spread in the
image. We can estimate this amount of spread for every pixel
by computing the normalized mass distribution by taking s
samples along different lines lθ centered at the corresponding
pixel positions xlθ and with length equal to the image width,
see Figure 3. For these sampled lines we compute the weighted
distribution for each pixel position xi:

ν
i
θ =

∑
s
j=1 ps j

lθ
||xi−xs j ||

∑
s
j=1 ps j

lθ

(2)

ν
i = min

θ∈[0,2π]
ν

i
θ (3)
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(a) (b)

Fig. 3. Scatterplot example and its respective density
image. For each pixel we compute the mass distribution
along different directions and save the smallest value,
here depicted by the blue line.

where ps j
lθ

is the j-th sample along line lθ and xs j is its
corresponding position in the image. For pixels positioned at a
maximum of a density image conveying a real correlation the
distribution value will be very small, if the line is orthogonal
to the local main direction of the correlation at the current
position, in comparison to other positions in the image. Note
that such a line can be found even in non-linear correlation.
On the other hand, pixels in density images conveying low
correlation will always have only large ν values.

For each column in the image we compute the minimum
value and sum up the result. The final RVM value is therefore
defined as:

RV M =
1

∑x miny ν(x,y)
, (4)

where ν(x,y) is the mass distribution value at pixel position
(x,y).

4.2 Scatterplot Measures for classified data
Most of the known techniques calculate the quality of a
projection, without taking the class distribution into account.
In classified data plots we can search for the class distribution
in the projection, where good views should show good class
separation, i.e. minimal overlap of classes.

In this section we propose three approaches to rank the
scatterplots of multivariate classified datasets, in order to
determine the best views of the high-dimensional structures.

4.2.1 Class Density Measure
The Class Density Measure (CDM) evaluates orthogonal pro-
jections, i.e. scatterplots, according to their separation prop-
erties. Therefore, CDM computes a score for each candidate
plot that reflects the separation properties of the classes. The
candidate plots are then ranked according to their score, so
that the user can start investigating highly ranked plots in the
exploration process.

In the case we are given only the visualization without the
data, we assume that every color used in the visualization
represents one class. We therefore separate the classes first
into distinct images, so that each image contains only the
information of one of the classes. A continuous representation
for each class is necessary in order to compute the overlap
between the classes, we estimate a continuous, smooth density

function based on local neighborhoods. For each screen pixel s
the distance to its k-th nearest neighbors Ns of the same class is
computed and the local density is derived as described earlier
in Section 4.1.

Having these continuous density functions available for each
class we estimate the mutual overlap by computing the sum
of the absolute difference between each pair and sum up the
result:

CDM =
M−1

∑
k=1

M

∑
l=k+1

P

∑
i=1
|pi

k−pi
l | , (5)

with M being the number of density images, i.e. classes
respectively, pi

k is the i-th pixel value in the density image
computed for the class k, and P is the number of pixels. If the
range of the pixel values is normalized to [0,1] the range for
the CDM is between 0 and P, considering 2 classes (M=2).
This value is large, if the densities at each pixel differ as much
as possible, i.e. if one class has a high density value compared
to all others. It follows that the visualization with the fewest
overlap of the classes will be given the highest value. Another
property of this measure is not only in assessing well separated
but also dense clusters, which eases the interpretability of the
data in the visualization. Note that non-overlapping classes
in scatterplots produce different density images using our
algorithm. Even if the clusters are similar, the density images
are different, which results in a high value for the CDM
measure.

4.2.2 Class Separating Measure
The CDM (Section 4.2.1) measure finds views with few
overlap between classes and dense clusters in high dimensional
data sets. The CDM measure is computed over density images
with a rapid falloff function. The local density ρ was defined
as ρ = 1/r (Section 4.1). By changing this function, we are
able to control the balance between the property of separation
and dense clustering. Choosing a function with an increasing
value for r can yield better separated clusters but with a lower
clustering property.

In our experiments we found that using ρ = r instead
ρ = 1/r, provides a good trade-off between class separability
and clustering. In extension to the CDM measure, we therefore
propose the Class Separating Measure (CSM). The main
difference between these two measures is in the computation
of the continuous representation of the scatterplot, henceforth
termed distance field for the CSM (with ρ = r), and density
image for the CDM (with ρ = 1/r).

To compute a distance field, the local distance at a screen
pixel s is defined as r, where r is the radius of the enclosing
sphere of the k-nearest neighbors of s, as described earlier in
Section 4.1. Once we have the distance field of each class,
the CSM is computed as the sum of the absolute difference
between them (note that for the CDM measure the inverse of
the distance was used):

CSM =
M−1

∑
k=1

M

∑
l=k+1

P

∑
i=1
|pi

k−pi
l | , (6)

with M being the number of distance field images, i.e. classes
respectively, pi

k is the i-th pixel value in the distance field
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computed for the class k, and P is the number of pixels.
Comparing the CSM and the CDM, the Class Separating
measure has a bias towards large distances between clusters,
while the Class Density measure has a bias towards dense
clusters. We consider separation and density of the clusters as
two different user tasks. Frequently, views with well separated
clusters are not necessarily the ones with dense clusters. When
a view presents both properties simultaneously, it is assigned
with a higher value by the two measures, producing a similar
rank for both measures. A comparison between the Class
Separating and Class Density measures with a real example is
presented in Section 6.1.

4.2.3 Histogram Density Measure
The Histogram Density Measure (HDM) is a density mea-
sure for scatterplots which extends the previously presented
approaches by including non-orthogonal views in the results.
It considers the class distribution of the data points using
histograms. Since we are interested in plots that show good
class separations, HDM looks for corresponding histograms
that show significant separation properties. To determine the
best low-dimensional embedding of the high-dimensional data
using HDM, a two step computation is conducted.

First, we search in the 1D linear projections which dimen-
sion is separating the data. For this purpose, we calculate
the projections and rank them by the entropy value of the
1D projections separated in small equidistant parts, called
histogram bins. pc is the number of points of class c in one
bin. The entropy, average information content of that bin, is
calculated as:

H(p) =−∑
c

pc

∑c pc
log2

pc

∑c pc
. (7)

H(p) is 0, if a bin has only points of one class, and log2M, if
it contains equivalent points of all M classes. This projection
is ranked with the 1D-HDM:

HDM1D = 100− 1
Z ∑

x
(∑

c
pcH(p)) (8)

= 100− 1
Z ∑

x
∑
c

pc(−∑
c

pc

∑c pc
log2

pc

∑c pc
). (9)

where 1
Z is a normalization factor, to obtain ranking values

between 0 and 100, having 100 as best value:

1
Z
=

100
log2M ∑x ∑c pc

. (10)

In some datasets, paraxial projections are not able to show
the structure of high-dimensional data. In these cases, simple
rotation of the projection axes can improve the quality of
the measure. In Figure 4. we show an example, where a
rotation is improving the projection quality. While the paraxial
projection of these classes cannot show these structures on the
axes, the rotated (dotted projection) axes have less overlay
for a projection on the x′ axes. Therefore we rotate the
projection plane and compute the 1D-HDM for different angles
θ . For each plot we choose the best 1D-HDM value. We
experimentally found θ = 9m degree, with (m ∈ [0,20)) to be
working well for all our datasets.

Fig. 4. 2D view and rotated projection axes. The pro-
jection on the rotated plane has less overlap, and the
structures of the data can be seen even in the projection.
This is not possible for a projection on the original axes.

Second, a subset of the best ranked dimensions are chosen
to be further investigated in higher dimensions. All the combi-
nations of the selected dimensions enter a PCA computation.
PCA [22] is a widely used technique for high-dimensional
data analysis. It transforms a high-dimensional dataset with
correlated dimensions, in a lower-dimensional dataset with
uncorrelated dimensions, called principal components.

For every combination of selected dimensions, after the
PCA is computed, the first two components of the PCA are
plotted to be ranked by the 2D-HDM. The 2D-HDM is an
extended version of the 1D-HDM, for which a 2-dimensional
histogram on the scatterplot is computed. The quality is
measured, exactly as for the 1D-HDM, by summing up a
weighted sum of the entropy of one bin. The measure is
normalized between 0 and 100, having 100 for the best data
points visualization, where each bin contains points of only
one class. Also the bin neighborhood is taken into account,
as for each bin pc we sum the information of the bin itself
and the direct neighborhood, labeled as uc. Consequently the
2D-HDM is:

HDM2D = 100− 1
Z ∑

x,y
∑
c

uc(−∑
c

uc

∑c uc
log2

uc

∑c uc
) (11)

with the adapted normalization factor
1
Z
=

100
log2M ∑x,y(∑c uc)

. (12)

5 QUALITY MEASURES FOR PARALLEL CO-
ORDINATES
When analyzing parallel coordinate plots, we focus on the de-
tection of plots that show either significant correlation between
attribute dimensions or good clustering properties in certain
attribute ranges. There exist a number of analytical approaches
for parallel coordinates to generate dimension orderings that
try to fulfill these tasks [13], [14]. However, they often do not
generate an optimal parallel plot for correlation and clustering
properties, because of local effects which are not taken into
account by most analytical functions. We therefore present
analysis functions that do not only take the properties of the
data into account, but also considers the properties of the
resulting plot.
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(a) (b)

Fig. 5. Synthetic examples of parallel coordinates and
their respective Hough spaces: (a) presents two well
defined line clusters and is more interesting for the cluster
identification task than (b), where no line cluster can
be identified. Note that the bright areas in the ρθ -plane
represent the clusters of lines with similar ρ and θ .

5.1 Parallel Coordinate Measures for unclassified
data

5.1.1 Hough Space Measure

Our analysis is based on finding patterns like clustered lines
with similar positions and directions. Our algorithm for de-
tecting these clusters is based on the Hough transform [23].

Straight lines in the image space can be described as y =
ax+ b. The main idea of the Hough transform is to define a
straight line according to its parameters, i.e. the slope a and
the interception b. Due to a practical difficulty (the slope of
vertical lines is infinite) the normal representation of a line is:

ρ = xcosθ + ysinθ , (13)

where ρ is length of the normal from the origin to the
line and θ is the angle between this normal and the x-axis.
Using this representation, for each non-background pixel in the
visualization, we have a distinct sinusoidal curve in the ρθ -
plane, also called Hough or accumulator space. An intersection
of these curves indicates that the corresponding pixels belong
to the line defined by the parameters (ρi,θi) in the original
space. Figure 5 shows two synthetic examples of parallel
coordinates and their respective Hough spaces: Figure 5(a)
presents two well defined line clusters and is more interesting
for the cluster identification task than Figure 5(b), where no
line cluster can be identified. Note that the bright areas in the
ρθ -plane represent the clusters of lines with similar ρ and θ .

To reduce the bias towards long lines, e.g. diagonal lines, we
scale the pairwise visualization images to an n×n resolution,
usually 512×512. The accumulator space is quantized into a
w×h cell grid, where w and h control the similarity sensibility
of the lines. We use 50×50 grids in our examples. A lower
value for w and h reduces the sensibility of the algorithm
because lines with a slightly different ρ and θ are mapped to
the same accumulator cells.

Based on our definition, good visualizations must contain
fewer well defined clusters, which are represented by accumu-
lator cells with high values. To identify these cells, we compute
the median value m as an adaptive threshold that divides the
accumulator function h(x) into two identical parts:

∑h(x)
2

= ∑g(x) , where (14)

g(x) =

{
x if x≤ m;
m else.

Using the median value, only a few clusters are selected in
an accumulator space with high contrast between the cells
(See Fig. 5(a)), while in a uniform accumulator space many
clusters are selected (See Fig. 5(b)). This adaptive threshold
is not only necessary to select possible line clusters in the
accumulator space, but also to avoid the influence of outliers
and occlusion between the lines. In the occlusion case, a point
that belongs to two or more lines is computed just once in the
accumulator space.

The final goodness value for a 2D visualization is computed
by the number of accumulator cells ncells that have a higher
value than m normalized by the total number of cells (wḣ) to
the interval [0,1]:

si, j = 1− ncells

wh
, (15)

where i, j are the indices of the respective dimensions, and
the computed measure si, j presents higher values for images
containing well defined line clusters (similar lines) and lower
values for images containing lines in many different directions
and positions.

Having combined the pairwise visualizations, we can now
compute the overall quality measure by summing up the re-
spective pairwise measurements. This overall quality measure
of a parallel visualization containing n dimensions is:

HSM = ∑
ai∈I

sai,ai+1 , (16)

where I is a vector containing any possible combination of the
n dimensions indices. In this way we can measure the quality
of any given visualization by using parallel coordinates.

Exhaustively computing all n-dimensional combinations in
order to choose the best/worst ones, requires a very long
computation time and becomes unfeasible for a large n. In
these cases, in order to search for the best n-dimensional
combinations in a feasible time, an algorithm to solve a
Traveling Salesman Problem is used, e.g. the A*-Search algo-
rithm [24] or others [25]. Instead of exhaustively combining
all possible pairwise visualizations, these kind of algorithms
would compose only the best overall visualization.

5.2 Parallel Coordinates Measures for classified
data
While analyzing parallel coordinates visualizations with class
information, we consider two main issues. First, in good
parallel coordinates visualizations, the lines that belong inside
a determined class must be quite similar (inclination and
position similarity). Second, visualizations where the classes
can be separately observed and that contain less overlapping
are also considered to be good. We developed two measures
for classified parallel coordinates that take these matters into
account: the Similarity Measure that encourages inner class
similarities, and the Overlap Measure that analyzes the overlap
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between classes. Both are based on the measure for unclassi-
fied data presented in Section 5.1.

5.2.1 Similarity Measure
The similarity measure is a direct extension of the measure
presented in Section 5.1. For visualizations containing class
information, the different classes are usually represented by
different colors. We separate the classes into distinct images,
containing only the pixels in the respective class color, and
compute a quality measure sk for each class, using Equation
(15). Thereafter, an overall quality value s is computed as the
sum of all class quality measures:

SM = ∑
k

sk. (17)

Using this measure, we encourage visualizations with strong
inner class similarities and slightly penalize overlapped
classes. Note that due to the classes overlap, some classes
have many missing pixels, which results in a lower sk value
compared to other visualizations where less or no overlap
between the classes exists.

5.2.2 Overlap Measure
In order to penalize overlap between classes, we analyze the
difference between the classes in the Hough space (see Section
5.1). As in the similarity measure, we separate the classes
to different images and compute the Hough transform over
each image. Once we have a Hough space h for each class,
we compute the quality measure as the sum of the absolute
difference between the classes:

OM =
M−1

∑
k=1

M

∑
l=k+1

P

∑
i=1
|hi

k−hi
l |. (18)

Here M is the number of Hough space images, i.e. classes
respectively and P is the number of pixels. This value is
high if the Hough spaces are disjoint, i.e. if there is no large
overlap between the classes. Therefore, the visualization with
the smallest overlap between the classes receives the highest
values.

Another interesting use of this measure is to encourage or
search for similarities between different classes. In this case,
the overlap between the classes is desired, and the previously
computed measure can be inverted to compute suitable quality
values:

OM INV = 1/OM. (19)

6 APPLICATION
To evaluate our measures we tested them on a variety of
different real datasets. We applied our Class Density Measure
(CDM), Class Separating Measure (CSM), Histogram Den-
sity Measure (HDM), Similarity Measure (SM) and Overlap
Measure (OM) on classified data, to find views that try to
either separate or show similarities between the classes. For
unclassified data, we applied our Rotating Variance Measure
(RVM) and Hough Space Measure (HSM) in order to find
linear or non-linear correlations and clusters in the datasets,
respectively.

Except for the HDM, we chose to present only relative
measures, i.e. all calculated values are scaled so that the best
visualization is assigned 100 and the worst 0. This scaling is
intended to ease the interpretability of the measure by the user.
For the HDM, we chose to present the unchanged measure
values, as the HDM allows an easy direct interpretation, with
a value of 100 being the best and 0 being the worst possible
constellation. If not otherwise stated, our examples are proof-
of-concepts, and interpretations of some of the results should
be provided by domain experts.

We used the following datasets: Parkinson’s Disease is a
dataset composed of 195 biomedical voice measures from 31
people, 23 with Parkinson’s disease [26], [27]. Each of the 12
dimensions is a particular voice measure. The voice record-
ings from these individuals have been taken with the goal
to discriminate healthy people from those with Parkinson’s
disease. Olives is a classified dataset with 572 olive oil samples
from nine different regions in Italy [28]. For each sample the
normalized concentrations of eight fatty acids are given. The
large number of classes (regions) poses a challenging task to
the algorithms trying to find views in which all classes are well
separated. Cars contains 7404 cars listed with 24 different
attributes, including price, power, fuel consumption, width,
height and others, automatically collected from a national
second hand car selling website. We chose to divide the dataset
into two classes, benzine and diesel to find the similarities
and differences between these. Wisconsin Diagnostic Breast
Cancer (WDBC) dataset consists of 569 samples with 30
real-valued dimensions each [29]. The data is classified into
malign and benign cells. The task is to find the best separating
dimensions. Wine is a classified dataset with 178 instances and
13 attributes describing chemical properties of Italian wines
derived from three different cultivars. A synthetic dataset that
contains 1320 data items and 100 variables, of which 14
contain significant structures [30].

6.1 Scatterplot Measures

First we show our results for RVM on the Parkinson’s Disease
dataset. The three best and the three worst results are shown
in Figure 6. High correlations have been found between
the dimensions Dim 9 (DFA) and Dim 12 (PPE), Dim 2
(MDVP:Fo(Hz)) and Dim 3 (MDVP:Fhi(Hz)), as well as Dim
2 (MDVP:Fo(Hz)) and Dim 4 (MDVP:Flo(Hz)) and got a
high value by the measure (Fig. 6). However, visualizations
containing low correlation received a low value.

In Figure 7 the results for the Olives dataset using our CDM
measure are shown. Even though a view separating all different
olive classes does not exist, the CDM reliably choses three
views which separate the data quite well in the dimensions
Dim 4 (oleic) and Dim 5 (linoleic), Dim 1 (palmitic) and Dim
5 (linoleic) as well as Dim 1 (palmitic) and Dim 4 (oleic).

We also applied our HDM technique to this dataset. First the
1D-HDM tries to identify the best separating dimensions, as
presented in Section 4.2.3. The dimensions Dim 1 (palmitic),
Dim 2 (palmitoleic), Dim 4 (oleic), Dim 5 (linoleic) and Dim
8 (eicosenoic) were ranked as the best separating dimensions.
We computed all subsets of these dimensions and ranked their
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Best ranked views using RVM
100 97 75

Worst ranked views using RVM
0 0.3 5.6

Fig. 6. Results for the Parkinson’s Disease dataset
using our RVM measure (Section 4.1). While clumpy
low-correlation bearing views are punished (bottom row),
views containing higher correlation between the variables
are preferred (top row).

Best ranked views using CDM
100 97 84

Worst ranked views using CDM
0 15 24

Fig. 7. Results for the Olives dataset using our CDM
measure (Section 4.2.1). The different colors depict the
different classes (regions) of the dataset. While it is im-
possible for this dataset to find views completely separat-
ing all classes, our CDM measure still found views where
most of the classes are mutually separated (top row). In
the worst ranked views the classes clearly overlap with
each other (bottom row).

Best ranked PCA-views using HDM
85.45 84.98 84.9

Fig. 8. Results for the Olives dataset using our HDM
measure (Section 4.2.3). The best ranked plot is the PCA
of Dim(4,5,8) reveiling a good view on all the classes, the
second best is the PCA of Dim(1,2,4) and the third is the
PCA on all 8 dimensions. The differences between the
last two are small, because the variance in that additional
dimensions for the 3rd Eigenvector relative to the 2nd
is not big. The difference between these and the first is
clearly visible.

PCA views with the 2D-HDM. In the best ranked views,
presented in Figure 8, the different classes are well separated.
Compared to the upper row in Figure 7, the visualization
utilizes the screen space better, which is due to the PCA
transformation.

Comparing our CSM and CDM measures, we can observe
that they present distinct results on the same datasets. Applying
the CSM to the Wine dataset reveals views that present a
good separation between the classes (Figure 9). The best
ranked plots present a large distance between the centers of
the class clusters, Dim 7 (Flavanoids) and Dim 13 (Proline),
Dim 7 (Flavanoids) and Dim 10 (Color intensity), and Dim 7
(Flavanoids) and Dim 12 (OD280/OD315 of diluted wines).
The worst ranked views, in opposite, show only cluttered data.
The result for CDM measure on the Wine dataset is depicted
in the Figure 10. The best ranked plots (Dim 7 (Flavanoids)
and Dim 10 (Color intensity), Dim 1 (Alcohol) and Dim 7
(Flavanoids), and Dim 7 (Flavanoids) and Dim 13 (Proline))
present more dense clusters, as expected. Note that the second
best ranked view, Dim 1 (Alcohol) and Dim 7 (Flavanoids)
(with CDM = 89), is not considered good using the CSM
measure (CSM = 58). Comparing Figure 9 and Figure 10,
we can observe that the CSM favors large distances between
the clusters, while the CDM assigns high values to views
that present dense but separated clusters, even if the distances
between them are much smaller.

The analyst has also the possibility to look at all orthogonal
views of a dataset at once by arranging them in a scatterplot
matrix. In our system the scatterplots are shown in the upper
right half of the SPLOM, while the other half is used to display
the goodness values of each plot. To guide the analysis the user
can fade out lower ranked views, which helps to focus on those
with a higher probability of information bearing content. This
is especially helpful if the number of dimensions in the dataset
is very large, as the number of plots in a SPLOM increases
quadratically. Figure 11 shows an example. Both SPLOMs
show the WDBC dataset, but the left one shows the results for
the RVM while the right one shows the results for the CDM
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Fig. 11. Results on the WDBC dataset for the RVM (left) and the CDM (right). In this example views with a goodness
value of less than 0.95 have been faded out. This way many irrelevant views can be faded out reducing the important
plots to a more manageable size.

Best ranked views using CSM
100 97 93

Worst ranked views using CSM
0 0.05 0.08

Fig. 9. Results for the Wine dataset using our CSM
measure (Section 4.2.2). The best ranked plots present a
large distance between the centers of the class clusters,
while the worst ranked views show only cluttered data.

measure. The threshold for both SPLOMs was set to 0.95, so
all plots with a lower rank have been faded out. As can be
seen in the enlarged detail, different views come into focus
depending on the chosen measure. While the RVM considers
plots with a high degree of correlation as more important, the
CDM focuses on separating the designated classes, here the
malign and benign cells. What pattern is preferable always
depends on the user task.

6.2 Parallel Coordinates Measures
To measure the value of our approaches for parallel coordi-
nates we estimated the best and worst ranked visualizations
of different datasets. The corresponding visualizations are
shown in Figure 12, 13 and 14. For a better comparability
the visualizations have been cropped after the display of the
4th dimension. We used a size of 50× 50 for the Hough
accumulator in all experiments. The algorithms are quite
robust with respect to the size and using more cells generally

Best ranked views using CDM
100 89 88

Worst ranked views using CDM
0 0.04 0.07

Fig. 10. Results for the Wine dataset using our CDM
measure (Section 4.2.1).Note that the second best ranked
view, Dim 1 (Alcohol) and Dim 7 (Flavanoids) (with CDM
= 89), is not considered good using the CSM measure
(CSM = 58).

only increases computation time but has little influence on the
result.

The recent work presented by Johansson and Johansson
[30] introduces a system for dimensionality reduction by
combining user-defined quality metrics using weighted func-
tions to preserve as many important structures as possible.
The analyzed structures are clustering properties, outliers and
dimension correlations. We used a synthetic dataset presented
in their paper to test our Hough Space Measure The HSM
algorithm prefers views with more similarity in the distance
and inclination of the different lines. We computed our HSM
on this synthetical dataset and present the result in Figure 12.
Here we can see the best ranked plots for clustered data points
in the top row and the worst ranked plots in the bottom. At the
top the clusters of lines are clearly visible in contrast to the
bottom where no structures are visible. The five dimensions
that are in the best plots are dimensions A, C, G, I, J. Four
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best ranked views using HSM
100 98.899.3

worst ranked views using HSM
0 0 0.2

Fig. 12. Results for the synthetic dataset [30]. Best and worst ranked visualizations using our HSM measure for non-
classified data (ref. Section 5.1.1). (a) Top row: The three best ranked visualizations and their respective normalized
measures. Well defined clusters in the dataset are favored. Bottom row: The three worst ranked visualizations. The
large amount of spread exacerbates interpretation. Note that the user task related to this measure is not to find high
correlation between the dimensions but to detect good separated clusters.

3 20 18 15

5 19 1 9 9 1 12 199 1 19 12

17 6 15 18 17 6 20 18

best ranked views using SM
100 9898

worst ranked views using SM
0 0.1 0.2

Fig. 13. Results for the Cars dataset. Cars using benzine are shown in black, diesel in red. Best and worst ranked
visualizations using our Hough similarity measure (Section 5.2.1) for parallel coordinates. (a) Top row: The three best
ranked visualizations and their respective normalized measures. Bottom row: The three worst ranked visualizations.

13 17 18 3113 31 18 1717 18 31 21

22 9 24 29 25 9 22 2925 9 24 29

worst ranked views using OM

best ranked views using OM
100 99 99

0 0.1 0.2

Fig. 14. Results for the WDBC dataset. Malign nuclei are colored black while healthy nuclei are red. Best and worst
ranked visualizations using our overlap measure (Section 5.2.1) for parallel coordinates. (a) Top row: The three best
ranked visualizations. Despite good similarity, which are similar to clusters, visualizations are favored that minimize
the overlap between the classes, so the difference between malign and benign cells becomes more clear. Bottom row:
The three worst ranked visualizations. The overlap of the data complicates the analysis, the information is useless for
the task of discriminating malign and benign cells.



TATU et al.: AUTOMATED ANALYTICAL METHODS TO SUPPORT VISUAL EXPLORATION OF HIGH-DIMENSIONAL DATA 11

out of five dimensions are also determined by [30] as the
best dimensions for clustering. They use user-defined quality
measures for their system and our resulting dimensions are a
subset of their best 9 dimensions. This gives the proof that our
measures are also designed in the way that users would rank
their plots.

Applying our Hough Similarity Measure to the Cars dataset
we can see that there seem to be barely any good clusters in
the dataset (see Figure 13). We verified these by exhaustively
looking at all pairwise projections. However, the only dimen-
sion where the classes can be separated and at least some form
of cluster can be reliably found is Dim 6(RPM), in which
cars using diesel generally have a lower value compared to
benzine (Fig. 13 top row). Also the similarity of the majority
in Dim 15(Height), Dim 18(Trunk) and Dim 3(Price) can be
detected. Obviously cars using diesel are cheaper, this might
be due to the age of the diesel cars, but age was unfortunately
not included in the data base. On the other hand the worst
ranked views using the HSM (Fig. 13, bottom row) are barely
interpretable, at least we were unable to extract any useful
information.

In Figure 14 the results for our Hough Overlap Measure
applied to the WDBC dataset are shown. This result is very
promising. In the top row, showing the best plots, the malign
and benign are well separated. It seems that the dimensions
Dim 22 (radius (worst)), Dim 9 (concave points (mean)), Dim
24 (perimeter (worst)), Dim 29 (concave points (mean)) and
Dim 25 (Area (worst)) separate the two classes well.

7 EVALUATION OF THE MEASURES’ PERFOR-
MANCE USING SYNTHETIC DATA
To show the effectivity of our measures and to explain their
differences, we analyzed their results on a synthetical dataset.
We created a 10-dimensional dataset with two classes. By
selecting just two classes we aim to show the fundamental
differences between the measures, which allow to detect
hidden patterns.

In three dimensions we hid target patterns to test how
this projections are ranked by the measures. The patterns
where created as follows: the first pattern in dimension
(2− 5) contains two classes with means at m1 = (6,14) and
m2 = (13,6), each containing 500 samples from a multivariate

normal distribution with C1 =

(
3 2.7

2.7 3

)
the covariance

matrix of the variables. In dimension 6 we defined two classes
with means at m3 = 6 respectively m4 = 13 with 500 random
samples of a normal distribution and with standard deviation
std = 1.5 for each class. With this definition of the dimensions
three patterns in dimension (2−5), (2−6) and (5−6) occur.

In the other 7 dimensions we defined random patterns.
This are developed systematically, by taking for every dimen-
sion the mean md = 10 and 1000 samples from a normal
distribution starting from a standard deviation std = 0.5 and
increasing this with 0.5 for each dimension. Therefore the last
random dimension has the std = 3.5.

In Figure 15 we present the scatterplot matrix of the
synthetical dataset showing the scatterplots above the main
diagonal and the parallel coordinate plots under the diagonal.

Fig. 15. Matrix for the synthetical dataset with scatterplots
above the main diagonal and parallel coordinate plots
bellow.

We ranked all these plots with our measures for scatter-
plots and parallel coordinates. The results are presented in
Figure 16. For every measure we show a point chart containing
the sorted measure results. The target patterns are marked red
in each plot. It can be seen that all measures ranked as best
plot one of the target patterns.

The scatterplot measures for classified data CDM and CSM
found all the three target patterns as the best projections of
the dataset. This confirms our assumption that this measures
search for the projections with the best class separability and
the most dense classes. The RVM designed for datasets without
classes was computed on the same dataset with no class
information (Note that this means that RVM was measured
on plots like in Figure 15 that have no different colors for the
data points.) The best ranked scatterplot by RVM is (2− 5)
having the most dense target pattern. RVM is aimed to find
the scatterplots with the highest correlations. We can see that
(2−5) is the target pattern with the highest correlation. The
second target pattern (2− 6) shows two clusters with high
correlation, and is also found by the RVM.

The 1D-HDM ranked best the target patterns with a result
of 100. This synthetical dataset is unfortunately inapplicable
to test the 2D-HDM because the patterns are along the
euclidian dimensions and therefore the 1D-HDM finds the
best projection. Computing the PCA and searching for a
better projection of the principal components is not necessary,
because the value of 100 cannot be improved. Applying the
PCA to the best dimensions selected by the 1D-HDM (2, 5
and 6), we obtain the plot showed in Figure 17. These best
components of the PCA are also ranked with 100 by the 2D-
HDM. Note that the resulting plot is not visually better then
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Scatterplot Measures
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Fig. 16. Results of the 7 measures for classified and unclassified data. The first row shows the result for the scatterplot
measures and the second row for the parallel coordinates measures. The ranks are sorted decreasing and the target
patterns are marked with red crosses.
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Fig. 17. Scatterplot of the first two components of the
PCA over dimensions 2, 5 and 6.

the orthogonal projection (2−5) and no additional information
can be obtained through the PCA.

The parallel coordinates measures are designed to target
different patterns. HSM ranks best parallel coordinates plots
for unclassified data with similar positions and directions, i.e.
clusters. For classified data SM looks for this clusters taking
the classes into account and OM is designed to find parallel
coordinates plots having classes with fewest overlap.

In the point charts of the bottom row of Figure 16 we see
that all the measures for parallel coordinates ranked best one
of our target patterns. HSM analyzed the data with no class
information and ranked as best plot (5−6) where two classes

are visible. OM ranked also (5−6) as the best, because this
plot has the fewest overlap between the two classes. SM ranked
two target patterns in top 3: (5− 6) as the best, and (2− 6)
as third best, presenting lines in the two classes with almost
the same positions and directions.

This evaluation is only a starting point for a evaluation of
every possible parameter combination. In future a complete
statistical analysis of the correlation between the measures
and the correlation to the ground truth is necessary. In the
following, we briefly outline the basic steps for the future
evaluation process:

1) Define ground truth. The ground truth should be
generated in a synthetic dataset having two independent
variables, as the density and separability of classes.

2) Vary the number of classes. The synthetical datasets
have to have different number of classes.

3) Vary the number of dimensions. The synthetical
datasets have to have different number of dimen-
sions. They should simulate different types of high-
dimensional data: small datasets - 2 to 9 dimensions,
medium datasets - 10 to 49 dimensions, and large
datasets - 50 to 100 dimensions.

4) Statistical analysis. Make a statistical analysis of the
correlation between the measures, and a correlation to
the ground truth.

8 CONCLUSION

In this paper we presented several methods to aid and poten-
tially speed up the visual exploration process for different visu-



TATU et al.: AUTOMATED ANALYTICAL METHODS TO SUPPORT VISUAL EXPLORATION OF HIGH-DIMENSIONAL DATA 13

alization techniques. In particular, we automated the ranking of
scatterplot and parallel coordinates visualizations for classified
and unclassified data for the purpose of correlation and cluster
separation. In the future a ground truth could be generated, by
letting users choose the most relevant visualizations from a
manageable test set and compare them to the automatically
generated ranking in order to prove our methods. Some
limitations are recognized as it is not always possible to find
good separating views, due to a growing number of classes and
due to some multivariate relations, which is a general problem
and not related to our techniques.

The limitations of the above approach are of course de-
termined by the task, data complexity, and the measures
applied to find the requested patterns. Tasks might be of
different types, such as finding outliers, significant patterns,
different types of correlations between the dimensions etc. The
complexity of the data can be described by the number of
dimensions, the number of contained classes, and the clarity
of patterns (noise, over-plotting, and distribution of the data).
This complexity strongly influences the ability of measures to
detect the required patterns. There are a number of measures
in the domain of the paper assessing different types of tasks
and different applicability level for different datasets. However,
creating a data-task-measure taxonomy for our domain is out
of scope of the current paper, we strongly recommend such an
approach for future research. Our current approach therefore,
is to describe systematically the functioning of the presented
measures as a function of their ability to detect hidden patterns
in the data for a particular task. Consequently our results have
to be handled accordingly.

Our future work will consider comparison to other existing
measures. Furthermore, issues such as over-plotting will be
part of our study since they were currently disregarded. Scal-
ability concerns will need to be addressed in future research
under the constraint of data complexity and heuristics to
reduce the search space for target patterns.
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