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Abstract—Continuous Parallel Coordinates (CPC) are a contemporary visualization technique in order to combine several scalar
fields, given over a common domain. They facilitate a continuous view for parallel coordinates by considering a smooth scalar field
instead of a finite number of straight lines. We show that there are feature curves in CPC which appear to be the dominant structures
of a CPC. We present methods to extract and classify them and demonstrate their usefulness to enhance the visualization of CPCs.
In particular, we show that these feature curves are related to discontinuities in Continuous Scatterplots (CSP). We show this by
exploiting a curve-curve duality between parallel and Cartesian coordinates, which is a generalization of the well-known point-line
duality. Furthermore, we illustrate the theoretical considerations. Concluding, we discuss relations and aspects of the CPC’s/CSP’s
features concerning the data analysis.

Index Terms—Features, Parallel Coordinates, Topology, Visualization.

1 INTRODUCTION

The visual analysis of data has become important within the last years
due to the substantial benefit to facilitate an intuitive data access. Es-
pecially approaches based on mappings/projections are popular and
widely used, e.g., parallel coordinates, scatterplots or radvis, which all
visualize the data discretely.

For some time past, corresponding continuous visualizations are
developed which visualize data uninterrupted. Within those visual-
izations, additional features occur in comparison to the corresponding
discrete visualizations. The additional features convey certain prop-
erties about the underlying data, are therefore relevant for the visual
analysis, and thus need to be understood concerning their causes and
meanings. At present, our community knows a few of such continuous
visualization approaches but we know not yet much about the features
of them.

Two popular examples of continuous visualizations are Continu-
ous Scatterplots [3] and Continuous Parallel Coordinates [14]. Con-
cerning this, article [18] presents a classification of features of Con-
tinuous Scatterplots, introduces appropriate detection approaches and
gives first rudiments what the meaning of them within the data might
be. Furthermore, article [14] shows that Continuous Scatterplots can
be straight transformed into Continuous Parallel Coordinates and that
they are therefore related to each other.

However, not yet investigated are the features within Continuous
Parallel Coordinates which occur, e.g., as edges. Therefore, the the-
oretical part of our paper completely investigates and describes the
mathematical causes of such features, and the practical part of our
paper exploits the known features and relations of Continuous Scatter-
plots and Continuous Parallel Coordinates [14, 18] in order to directly
detect and illustrate the discussed features within the Continuous Par-
allel Coordinates.

In detail, our contributions are:

• a tool/algorithm to generate a linked overlay between the in-
volved visualization domains in order to examine relations be-
tween the features (Section 4),

• to describe several categories of features in Continuous Parallel
Coordinates (Section 5),

• to reveal relations between features in Continuous Parallel Coor-
dinates and Continous Scatterplots (Section 5.3.2),
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• applications in order to demonstrate the feature relations of the
involved visualization approaches (Section 6), and

• a discussion of the progress concerning the feature-based data
analysis with Continuous Scatterplots/Continuous Parallel Coor-
dinates (Section 7).

Following, the related work and background, on which our work is
based on, are presented.

2 RELATED WORK & BACKGROUND

In 2008, Bachthaler and Weiskopf [3] presented the visualization ap-
proach of Continuous Scatterplots. They extended the concept of dis-
crete scatterplots in order to produce scatterplots which are continu-
ously defined: if the underlying scalar fields are continuous, then the
construction of a Continuous Scatterplot (CSP) is possible, as the au-
thors show. Regarding this, a continuous mapping τ : Rn → Rm be-
tween an n-dimensional space and an m-dimensional space is required
to define a scalar density function σ(τ) : Rm → R, which yields color
coded the CSP visualization. The first domain Rn of this map τ is
known as spatial domain (SD) because the data are measured there.
The second domain Rm is denoted as data domain (DD).

To draw an analogy to physics, a mass is defined by an integral
over a volume element weighted with a certain density. Thus, con-
sidering a small SD volume element V ∈ Rn and the corresponding
DD volume element Φ = τ(V ) ∈ Rm, the CSP approach assigns each
of them a mass value by msd =

∫
V s(x) dmx (usually s(x) = 1) and

mdd =
∫

Φ=τ(V ) σ(ξξξ = τ(x)) dnξξξ . Under the assumption of mass con-
servation msd = mdd the required scalar density function σ can be de-
scribed implicitly as:∫

V
s(x) dnx =

∫
Φ=τ(V )

σ(ξξξ ) dmξξξ .

Several analytical as well as numerical techniques can be derived from
this equation in order to calculate and to render CSPs of most diverse
dimensionalities, as shown, e.g., in [2], [4], or [13]. However, the
dimensionality of the SD might be an arbitrary value, but the DD is
usually two-dimensional as it is typical for a visualization.

Later on, in 2009, Heinrich and Weiskopf [14] presented the vi-
sualization approach of Continuous Parallel Coordinates (CPC). They
introduced a scheme of continuous density for the concept of paral-
lel coordinates. The approach defines a continuous transformation of
the density between the two-dimensional DD and the corresponding
two-dimensional parallel coordinates domain (PCD) with aid of the
point-line duality [15, 17, 16], which describes that a point in the DD
corresponds to a line in the PCD and vice versa. Concerning this, a
point ηηη = (η1,η2)

T of the PCD links to a line L in the DD, given by:

L : η2 = n·ξξξ .



Please note that the slope of this line depends on the attribute η1: n =
(1−η1,η1)

T . For the density φ(η1,η2) : R2 → R of an infinitesimal
volume η2 ∈ Ω in the PCD results the mass mpcd =

∫
Ω φ(η1,η2) dη2.

Furthermore, the mass of the corresponding volume Φ in the DD
is mdd =

∫
Φ σ(ξξξ ) d2ξξξ . With the assumption of mass conservation

mpcd = mdd follows the implicit density description, given by:∫
Ω

φ(η1,η2) dη2 =
∫

Φ
σ(ξξξ ) d2ξξξ . (1)

With the aid of the point-line duality Equation (1) can be rewritten
to define the density φ(ηηη) of a point ηηη = (η1,η2)

T in the PCD by
integration of the density σ(L) over the corresponding line L in the
DD:

φ(η1,η2) =
∫

L

σ(L(t))
||n||

dt. (2)

Based on Equation (2) some approaches to render a CPC from a CSP
have been introduced. One approach, named gathering, determines
several density values in the PCD by a Monte Carlo integration of the
density over the corresponding lines in DD in order to generate a nu-
merical approximation of the CPC which corresponds to a certain DD.
Another approach to get such an approximation is called scattering.
It takes the backward direction and blends different lines of constant
density from samples of the DD onto their corresponding lines in PCD
by exploiting the point-line duality. Additionally, a third analytical
approach for triangulated data is mentioned, which allows an analy-
tical density interpolation from a triangulated grid of the DD, which
is mapped onto the corresponding lines of the PCD. In practice, this
rendering approach is very usable due to the fact that a CSP is mostly
presented as triangulated data.

In 2010, Lehmann and Theisel [18] started the discussion about
discontinuity features within CSPs, in order to enhance the user’s abil-
ity to even better interpret data with the aid of the CSPs. Regarding
this, the discontinuities are non-smooth transitions within the scalar
field of density, as which a CSP can be interpreted. The authors in-
troduced mathematical models and detection approaches for disconti-
nuities of several cases of CSPs: a CSP2D is based on a map from a
two-dimensional SD onto a two-dimensional DD; a CSP3D is based
on a map from a three-dimensional SD onto a two-dimensional DD.
It has been shown that discontinuities are either caused by effects of
the boundary or the mapping function, which connect both involved
domains with each other.

For a CSP2D an equivalent parametric surface Sξ ,d can be assigned
by

Sξ ,d =

 ξ1 = τ1(x)
ξ2 = τ2(x)

d = det(D(τ)(x))


where det(D(τ)(x)) (with the Jacobian D) codes the reciprocal den-
sity value σ(ξξξ (x)) for a DD element ξξξ (x) = τττ(x) : R2 → R2. Closed
discontinuity curves with infinite density are zero crossings of the
surface and the DD described by Sξ ,d=0. In practice, the SD is
bounded. Therefore, further discontinuity curves occur where the
boundary edges of the SD are mapped onto the DD. These curves ap-
pear as “jumps” within the density. For a CSP3D the discontinuities
can be described via a helpful vector field q(x) = ∇ξ1(x) × ∇ξ2(x).
Curves for which this vector field vanishes q(x) = 0, mapped onto the
DD, are discontinuities. If they fulfill that the eigenvalues λ1,λ2 of
the Jacobian are ℜ{λ1} ≤ 0 ≤ ℜ{λ2}, then they form discontinuity
curves with infinite density which are denoted as saddle discontinu-
ities. Otherwise they are “jumps” within the density denoted as center
discontinuities. Furthermore, interesting boundary effects have been
mentioned, which also yield density “jumps”: the boundary edges of
the SD, and the boundary switch curves [28] of the vector field q(x).
We consider that the SD, the DD and the PCD are normalized within
a range of [0,1]h, whereas h is the dimensionality of a certain domain.
Figure 1 summarizes the classification of discontinuity features.

In Section 5 (“Features”) we discuss similar effects for the Con-
tinuous Parallel Coordinates, after giving an overview about the used
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Fig. 1. Classification of discontinuity features for CSP2D/3D. Except for
the center discontinuities, the boundary generates density jumps and
the mapping generates infinite density.

notation and an introduction into the required theory of geometric re-
lations between the DD and the PCD.

3 NOTATIONS & ABBREVIATIONS

Due to the theoretical nature of the paper we use a lot of different
mathematical notations and abbreviations which we summarize here.

Domain Scalar (R) Vector (R2/3)
Spatial Domain x,y,z Attributes of Point τ−1,x Point

s Scalar Value/Density
Data Domain ξ1/2 Attributes of Point τ,ξξξ Point

µ,ξ Distances ξξξ (t) Curve
σ Scalar Value/Density L Line/Polyline

Parallel Coordinates η1/2 Attributes of Point ηηη Point
Domain φ Scalar Value/Density ηηη(t) Curve

Ł Line/Polyline
Not Domain- λ Eigenvalue n Normal
Specific t Parameter P Circle

c1/2 Attributes of Center c Center Point
a1/2 Constants v Tangent (curve)
r Radius of Circle r Tangent (line)

Fig. 2. Mathematical notations.

Our used mathematical notations are given in Figure 2 and are
guided by [3, 14, 13]. Variables related to the spatial domain appear
with Latin letters, those which address the data domain or parallel co-
ordinates domain appear with Greek letters. Additionally, lowercase
thin variables relate to scalar values and the bold variables relate to
vectors with two/three attributes. Uppercase bold variables are lines
or curves. Those variables might occur in italic, non-italic or with
additional indices for reasons of case differentiation.

As mentioned in the related work, we consider three different do-
mains (see Figure 3). Regarding this, a CSP is defined by its density σ
over the data domain (DD), and a CPC by its density φ over the parallel
coordinates domain (PCD). A CSP based on a 2D/3D spatial domain
is a CSP2D/3D. Certain feature curves within a CSP/CPC appear either
as discontinuity curves of density “jumps”, which we denote as edges
curves, or they appear as discontinuity curves of an infinite density
which we denote as attract curves. Furthermore, feature curves might
appear as extreme curves, e.g., ridge curves.

spatial domain (SD) data domain (DD) parallel coordinates

domain (PCD)

edge curve (discontinuity)
attract curve (discontinuity) Continuous Scatterplot (CSP)

Continuous Parallel

Coordinates (CPC)
extreme curve (no discontinuity)

Fig. 3. Considered domains and relations to continuous visualizations.



4 THEORY

In order to understand the relations between the features of the differ-
ent domains, several geometric properties are introduced at first. By
now, the point-line duality is already known (Section 2). In this section
we introduce the curve-curve duality and the circle-area duality which
are based on the ellipse-hyperbola duality known, e.g., from [15].

4.1 Curve-Curve Duality
The curve-curve duality [15, 24] means that a curve of the PCD maps
exactly onto a curve in the DD and vice versa.

Proof: let us consider a plain curve ξξξ (t) : R→ R2; t ∈ R in the DD
with the tangent vector dξξξ (t)/dt = ξξξ ˙(t), which define a tangent line
LLL(t). Due to the point-line duality the line LLL(t) maps to a point curve
ηηη(t) in the PCD. Consequently, curve ξξξ (t) and curve ηηη(t) link to each
other. The same idea applies for the proof of the backward direction
from PCD to DD.

4.1.1 Curve in PCD from Curve in DD
At first, we reveal a curve ηηη(t) = (η1(t),η2(t))T from curve ξξξ (t) =
(ξ1(t),ξ2(t))T . The tangent line LLL(t) is given by: LLL(t) = ξξξ (t) +
tdd ξξξ ˙(t); tdd ∈ R. The line points ξξξ (t) and ξξξ ∆(t) = ξξξ (t)+ ξξξ ˙(t) yield
two lines in the PCD, given by:

Łξξξ (t) =

(
a1

ξ1(t)

)
+ t1

(
a2 −a1

ξ2(t)−ξ1(t)

)
; t1 ∈ R,

Łξξξ ∆(t)
=

(
a1

ξ∆1(t)

)
+ t2

(
a2 −a1

ξ∆2(t)−ξ∆1(t)

)
; t2 ∈ R.

As Figure 4 clarifies, the intersection point Łξξξ (t) =Łξξξ ∆(t)
of both lines

parallel coordinates domaindata domain

Fig. 4. Construction diagram of a curve in PCD from a curve in DD.

is the corresponding point ηηη(t) in the PCD, given by:(
a1

ξ1(t)

)
+ t1

(
a2 −a1

ξ2(t)−ξ1(t)

)
=

(
a1

ξ∆1 (t)

)
+ t2

(
a2 −a1

ξ∆2 (t)−ξ∆1 (t)

)
. (3)

Solving Equation (3) and inserting the result into the equation for line
Łξ (t) yields curve ηηη(t) in the PCD:

ηηη(t)=
(

η1(t)
η2(t)

)
=

(
a1

ξ1(t)

)
+

[
ξ1

˙(t)
ξ1

˙(t)−ξ2
˙(t)

](
a2 −a1

ξ2(t)−ξ1(t)

)
. (4)

4.1.2 Curve in DD from Curve in PCD
In order to reveal curve ξξξ (t) = (ξ1(t),ξ2(t))T from curve ηηη(t) =
(η1(t),η2(t))T we consider the inverse direction. Figure 5 shows that

parallel coordinates domaindata domain

Fig. 5. Construction diagram of a curve in DD from a curve in PCD

the horizontal ξ -axes in PCD coordinates are given by: (ai, t)T ; t ∈

R, i = {1,2}. The tangent line Ł(t) of the curve ηηη(t) is given by:
Ł(t) = ηηη(t)+ tpcd ηηη ˙(t); tpcd ∈ R. The components of the curve ξξξ (t)
in DD are now defined through the second attribute of the intersection
points between the tangent line Ł(t) and the ξ -axes in the PCD, given
by the linear system Ł(t) = (ai, t)T :

ηηη(t)+ tpcd ηηη ˙(t) =
(

ai
t

)
. (5)

Solving Equation (5) yields tpcd =
ai−η1(t)

η1
˙(t)

, which – inserted in the

equation for tangent line Ł – gives the formula for curve ξξξ (t):

ξξξ (t) =
(

ξ1(t)
ξ2(t)

)
=

η2(t)+
a1−η1(t)

η1
˙(t)

η2
˙(t)

η2(t)+
a2−η1(t)

η1
˙(t)

η2
˙(t)

 . (6)

For the paper, we consider only the PCD standard configuration [15]
with a1 = 0 and a2 = 1.

4.2 Circle-Area Duality
By the curve-curve duality the point-line duality is extensible to a con-
cept of circle-area duality, as shown in Figure 6. It describes that an
area of a circle in one domain is linked to an area bounded by the
corresponding curve of the other domain. The proof is trivial, thus
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Fig. 6. The circle-area duality illustrated for the case of PCD onto DD.

we mention only the basic scheme of it: two circles with different
radii but same center point in one domain are related to two curves in
the other domain which are free of intersections (curve-curve duality).
Additionally, a circle with radius r = 0 links to a corresponding line of
the center point (point-line duality). By converging an arbitrary radius
r → 0 the circle-area duality follows directly.

We briefly treat the case from the PCD to the DD. Let Pr
c(t) =

(r·cos(t)+ c1,r·sin(t)+ c2)
T ; t ∈ {0,2π} be a circle within the PCD

with the center c = (c1,c2)
T and the radius r. Then, concerning Equa-

tion (6), the curve ξξξ r
c(t) in the DD, which envelopes the corresponding

area, is given by:

ξξξ r
c(t) =

 c2·sin(t)+c1·cos(t)+r
sin(t)

c2·sin(t)−cos(t)+c1·cos(t)+r
sin(t)

 . (7)

Now we treat the case from the DD onto the PCD. We consider a circle
ξξξ r

c(t) = (r·cos(t)+c1,r·sin(t)+c2)
T in the DD. With Equation (4) its

corresponding curve in the PCD is:

Pr
c(t) =

 sin(t)
sin(t)+cos(t)

c1·cos(t)+c2·sin(t)+r
sin(t)+cos(t)

 .

4.2.1 Circle-Area linked overlay Algorithm
What remains is to state an algorithm to link/highlight associated ar-
eas. We introduce it for the case from the PCD to the DD, the other
case works analogous. The user interactively places a circle Pr

c with
center c and radius r in the PCD. The linked area can be obtained as



follows: the corresponding curve ξξξ r
c(t) (c.f. Equation (7)) is approxi-

mately drawn as polyline L, where one line segment Li is given by the
points (ξξξ r

c(ti),ξξξ
r
c(ti+1)) with ti+1 = ti+h (h steers the resolution). The

clipping between polyline L and the domain boundary edges, given by
the CohenSutherland or the LiangBarsky technique, yields a polygon
which represents the area in DD. We know that the line Lc of the cen-
ter point c is inside of this area. Thus, the polygon can be filled by
rasterizations [10], as the edge-fill-algorithm [1] or brute-force with a
flood-fill seeded at Lc. This linking of the areas is shown exemplarily
in the applications (Section 6).

5 FEATURES

A CPC equates to a two-dimensional scalar field, caused by the trans-
formation of the DD onto the PCD. Thus, known scalar field features
might occur, cf. [7, 9, 21]. Additionally, the investigation of the fea-
ture’s relations is important to facilitate the visual analysis of data by
CPCs. In this section we investigate the boundary features, the local
features as well as the global features.

5.1 Boundary Features
Figure 7 illustrates the relations of the boundary: the boundary edges
of the DD map to the corner points of the PCD. The boundary corner
points left-down/right-up of the DD map to the upper/downer bound-
ary edges of the PCD. Thus, these domain structures are not able to
mutually influence the quality of the corresponding visualization be-
cause they are just barely visible by the user. In contrast, the right-
down/left-up corner points map to diagonal lines which lie across the
visualization. The intersection point of these diagonal lines generates
a corresponding diagonal line within the DD.

Consequently, the transformation from DD to PCD causes that cer-
tain areas of one domain visually affect certain areas of the other do-
main stronger than other areas. Concerning this, the distribution of
gray-scale values of Figure 7 visually links the areas of DD and PCD
which mutual affects strongest; marked by similar gray-scale values.

Thus, for instance noise within the DD near the right-down/left-up
corner points would be mapped more in the center of the PCD, in con-
trast to noise close to the other corner points. In other words: the closer
the density values of a CSP to the right-down/left-up corner points are,
the more they influence the visual quality of the CPC. Furthermore, a
CPC is not invariant of rotations of the corresponding CSP. Similar
effects are already known from the discrete parallel coordinates.

data domain parallel coordinates domain

Fig. 7. Relations between domain boundary features, as boundary
edges and corner points: the relations are indicated by corresponding
colors. Regions with same gray value affect each other stronger than
other regions.

5.2 Local Features
In this section we investigate the relations between the DD’s lo-
cal features and the CPC. The DD’s local features [5] of an arbi-
trary 2D scalar field σ(ξξξ ) are given by ∇σ(ξξξ ) = 0, where 0 <
λ1 ≤ λ2 gives a minimum (source), λ1 < 0 < λ2 gives a sad-
dle, and λ1 ≤ λ2 < 0 gives a maximum (sink), whereas λ1,2 =
σξ1ξ1

+σξ2ξ2
2 ±

√
1
4 (σξ1ξ1

−σξ2ξ2
)2 +σ2

ξ2ξ1
are the eigenvalues of the

Hessian of σ with the partial derivatives σi j; i, j ∈ {ξ1,ξ2}. Such
local features are especially important for the numerous visualization
and analysis approaches which are based on the Morse-Smale Com-
plex [11, 12]. Several local feature detection approaches such as [9, 7]
are already known. Thus, we do not treat this aspect.

Two cases are possible: features with a finite scalar value and fea-
tures with an infinite scalar value. The last case are isolated singular-
ities of the scalar field. Based on the point-line duality the question
arises whether those local features form characteristic lines in CPC.

The case of local features with a finite scalar value does not, as we
will briefly explain: the feature’s curvation, given by κ , describes the
behavior of the environed scalar values. If κ is small, the feature’s
scalar value is similar to the scalar values of its ε-environment and
causes lines with similar density in the CPC, which strongly visually
influence each other. The more κ grows, the more distinct is the cor-
responding line of a feature within the CPC, in comparison to lines of
the ε-environment. But this is not a stable property in order to char-
acterize local feature lines in general. Thus, this kind of local features
might produce visible lines, but this is neither a stable property nor a
characteristic structure.

Unlike, the case of local singularity features of a scalar field. They
would cause characteristic CPC lines with an infinite density. Thus, we
further need to consider the special case of such singularities caused by
CSP2D/3D. The attract curves of a CSP2D are curves of the parametric
surface with Sξ ,d=0 (cf. Section 2). The attract curves of a CSP3D

are the feature lines of the vector field q. Both structures depend on
the scalar functions ξ1 = τ1(x) and ξ2 = τ2(x). By varying one of
these functions, both structures might shrink to a single point during
their evolution (Figure 8). Then, the CSP’s attracted curves form local
isolated singularities. By a small variation or by adding noise these
singularities would break and are not stable within the attracted curve
life cycle. Thus, isolated singularities in σ are not relevant concerning
CSP2D/3D.

Fig. 8. Evolution to isolated singularities for CSP2D/3D: (up) a curve
Sξξξ ,d=0 of the 2D case or (down) a feature line of the 3D case might
shrink to a single point, which would cause an isolated singularity within
the CSP. This is unstable and would break by adding noise.

5.3 Global Features

In this section, we investigate the relations of global features between
the DD and the CPC. Such global features are mainly discontinuity
curves which either form edge curves or attract curves. At first, we
treat the case of a generic scalar field σ(ξξξ ), given over the DD. After-
wards, we explore the behavior between the CSP2D/3D and the CPC as
special cases of scalar fields.

5.3.1 Global Features in CPC based on generic Scalar Fields

Given: a DD discontinuity curve by ξξξ (t) = (ξ1(t),ξ2(t))T . Within
an infinitesimal region, the curve’s behavior can be described by the



(semi) osculating circle Pr
c(t) with radius r(t) and center c(t):

r(t) =
(ξ1

˙(t)
2
+ξ2

˙(t)
2
)

3
2

det(ξξξ ˙(t),ξξξ ¨(t))
,c(t) =

ξ1(t)− ξ2
˙(t)·(ξ1

˙(t)
2
+ξ2

˙(t)
2
)

det(ξξξ ˙(t),ξξξ ¨(t))

ξ2(t)− ξ1
˙(t)·(ξ1

˙(t)
2
+ξ2

˙(t)
2
)

det(ξξξ ˙(t),ξξξ ¨(t))

 .

In order to simplify the considerations below, we place the ordinate’s
origin in c(t) and we consider the circle’s system as aligned with the
ξξξ axes.

Fig. 9. Discontinuity Curves: (a) mathematical relations for edge curves
in DD, (b) behavior of the density φ of a CPC at a DD edge curve. An
edge curve in DD is not an edge curve in CPC. (c) The mathematical
relations for curves with infinite scalar value in DD.

Let us assume that the discontinuity curve ξξξ (t) is an edge curve.
Then, the edge curve can be locally described as a disk of a high
σ(ξξξ ) = a ∈ R over the osculating circle Pr

c(t) (σ(ξξξ ) = 0 else). Fig-
ure 9 (a) illustrates this. The density φ(Lξ (t)) in PCD of a (verti-
cal) line Lξ (t) in DD, where ξ is the (horizontal) distance to c(t) and

µ =
√

r(t)2 −ξ 2
1 , is given by (cf. Equation (2)):

φ(Lξ (t)) = |2·
∫ µ

0
a dµ|= |2·a·

√
(r(t)2)−ξ 2|.

This is a monotonically decreasing density function (Figure 9 (b))
for ξ ∈ {0,∞}. Therefore, an edge curve in DD is not mapped onto
an edge curve in PCD, i.e., the edge disappears. We denote this
as smoothness effect, which informally means: an edge in DD is
smoothed by the CPC’s transformation.

Let us now assume that the discontinuity curve ξξξ (t) is an attract
curve. Then, the behavior of this curve can be locally described by its
osculating circle Pr

c(t). The scalar value σ(ξ ) at distance ξ along the
ξ1 axis can be described as σ(ξ ) = 1/|r(t)− ξ |a, so that the scalar
value is infinite at the periphery of the osculating circle. We assume
this kind of functional behavior for each center line of Pr

c(t), which
is orthogonal to the periphery (Figure 9 (c)). For each distance µ on
a (vertical) line Lξ (t), the scalar value σµ (ξ ) is given by the shortest
distance between the corresponding line point Lξ ,µ (t) and the periph-
ery: σµ (ξ ) = |(||Lξ ,µ (t)|| − r(t))|−a. Thus, the density φ(Lξ (t)) in
PCD for a line Lξ (t) in DD is given by:

φ(Lξ (t)) =
∫

µ
|
√

(µ2 +ξ 2)− r(t)|−a dµ. (8)

This integral cannot be solved analytically. Nevertheless, the density
behavior strongly depends on the exponent a. If a≥ 1 for ξ ∈{0,r(t)},
the density φ is infinite for each line Lξ (t): the attract curve in DD
maps onto a region in PCD with infinite density. If a ≥ 1 for ξ = r(t)
and 0 ≤ a < 1 else, then, each tangent line gives an infinite density, the
other lines do not. Due to the curve-curve duality, such a curve maps
onto a curve in PCD with infinite density. If a ≥ 1 for ξ ∈ R, then,
there is no line with infinite density in PCD. Thus, such a curve maps
on a smooth density plateau in the PCD. Subsequently, we investigate
solutions of Equation (8) for the CSP2D/3D as special case of a scalar
field in DD.

5.3.2 Global Features in CPC based on CSP2D/3D

We need to distinguish between feature curves which are caused by a
two-dimensional SD, i.e., the DD’s scalar field is a CSP2D; and feature
curves which are caused by a three-dimensional SD, i.e., the DD’s
scalar field is a CSP3D. We assume the knowledge about vector field
topology as [26, 20, 27, 25]. Furthermore, note that the CSP’s features
based on boundary effects (cf. Figure 1) form invariable edge curves
and disappear generally within the CPC due to the smoothness effect.

Contour Integral We introduce the concept of contour integral
for a 2D or 3D scalar field. We will use it to characterize feature
curves in CPC.

(a) (b) (c)

Fig. 10. Contour Integral of the case 2D (a,b) and 3D (c).

definition 1 Given is a scalar field s(x) in SD and a threshold a. The
contour integral f of s and a is defined as the integration of 1

∥∇s∥ over
the isocontour s(x) = a:

f (s,a) =
∫

s(x)=a

1
∥∇s∥

dx. (9)

For a 2D field s, f is obtained by integrating 1
∥∇s∥ over one (or more)

isocurves in arc length parametrization. Figure 10 (a) illustrates this.
There is an alternative way to compute f : integrate the co-gradient
field of s from a point x0 on the contour s(x) = a, f (s,a) is the time
until it returns to x0 again (or it leaves the domain in both forward and
backward direction). Figure 10 (b) illustrates this.

For a 3D scalar field s, f is obtained by integrating 1
∥∇s∥ over an

isosurface in a local area-preserving parametrization. Figure 10 (c)
illustrates this.

The contour in integral gives a well-defined value as long as ∇s
does not vanish. However, in order to analyze feature curves in CPC,
we are especially interested in the behavior of f at critical points of
s. We analyze this by considering a second order approximation of s
having a critical point at 0 and a Hessian whose eigenvectors λλλ i are
aligned with the coordinate axes:

s(x) =
λλλ 1

2
x2 +

λλλ 2

2
y2
(
+

λλλ 3

2
z2
)

where f (s,0) is the particular point of interest. Fortunately, for this
Equation (9) has a closed form solution1 which gives the following
cases: 2D: if s(0) is a local maximum (i.e., λ1,λ2 > 0), f (s,a) has a
discontinuity at 0. Figure 11 (a) illustrates this. A similar statement
holds for a local minimum. If s(0) forms a local saddle, (i.e., λ1,λ2 <
0), then f (s,a) diverges to infinity for a → 0. Figure 11 (b) illustrates
this.

3D: if s(0) is a local maximum (i.e., λ1,λ2,λ3 > 0), then f (s,0) = 0
and linearly growing with a. Figure 11 (c) illustrates this. A similar
statement holds for a local minimum. If s(0) forms a local saddle,
(i.e., λ1,λ2,λ3 < 0), then f (s,a) has a local finite maximum at a = 0.
Figure 11 (d) illustrates this.

Note that the asymptotic behavior of f around critical points in s is
different in 2D and 3D. Now we establish the relation of feature lines
in CSP and CPC by:

1We computed it by a formula manipulation system like Maple.



(a) 0 0

0 0

(b)

(c) (d)

Fig. 11. Behavior of the contour integral at critical points: 2D cen-
ter/saddle case (a-b) and 3D center/saddle case (c-d).

parallel coordinates

domain

data domain

area area=

2D spatial domain

3D spatial domain

(a) (b)

Fig. 12. Relation of the domains. (a) A PCD’s point yields a line in DD.
(b) The spanned area in DD yields a scalar field in SD.

lemma 1 The density φ(ηηη) at a point ηηη = (η1,η2)
T in the PCD is

f (s,a) with

s(x) = det
(

ξ1(x) −η1
ξ2(x) 1−η1

)
, a = η2.

Proof: Due to the point-line duality, the point (η1,η2) in the PCD

corresponds to the line det
(

ξ1(x) −η1
ξ2(x) 1−η1

)
= η2 in implicit form in

the DD (Figure 12 (a)). Its integration in SD gives the lemma (Fig-
ure 12 (b)). Furthermore, this lemma directly gives us the correlation
between feature lines in CSP and CPC both in 2D and 3D.

Case of CSP2D Based on the counter integral, we discuss the
CSP2D case in more detail now. A tangent vector r = (−η1,1−η1)

T

of a line L in DD yields, with the Jacobian D = D(τττ(x)), a tangent
vector v of the corresponding curve in SD:

v =

(
τ1x τ1y

τ2x τ2y

)−1
·r =

(
τ2y −τ1y

−τ2x τ1x

)
·det(D).

The co-gradient ∇−1s(x) for a certain threshold η2, concerning the
contour integral, is then defined through:

∇−1s(x) = ∇−1 det
(

ξ1(x) −η1
ξ2(x) 1−η1

)
= v·det(D).

The density in DD [3] is given by: σ = det(D)−1. Two properties
directly follow: (i) the vector length ||∇−1s(x)|| corresponds to the
DD’s density, and (ii) an integration curve of ∇−1s(x) equates to a
certain curve in the SD, whose integration time tφ gives the PCD’s
density φ(L) = φ(ηηη) for a certain line L of the DD (cf. Equation (2)).
This way, all domains are related to each other.

As suggested in the contour integral’s discussion, we have to treat
the critical points. Due to (i), critical points in ∇−1s(x) = 0 are also
discontinuity points in DD: σ(ξξξ ) =∞. There, two behaviors are possi-
ble (Figure 14 (a)): a center or a saddle behavior. For a center behavior,
the integration time tφ , and thus the density φ(ηηη) in PCD, in the cen-
ter’s environment is constant (in a first order approximation), and gets
abruptly to 0 at the critical point. Hence, for the center case, the DD’s

discontinuity point ξξξ with σ(ξξξ ) = ∞ corresponds to a point ηηη in PCD
which is a “jump” within the density φ . For a saddle behavior, the in-
tegration time tφ is infinite at the saddle’s streamline: tφ = ∞. Hence,
for the saddle case, the DD’s discontinuity point ξξξ with σ(ξξξ ) = ∞
corresponds to a point ηηη in PCD with an infinite density: φ(ηηη) = ∞.

saddle center

(c)
saddle feature line
center feature line

data domain parallel coordinates domain

edge curve

attract curve

attract curve

attract curve

(a) (b)

spatial domain

Fig. 14. Relations of global features between CSP2D and a CPC. (a)
Co-gradient field of s(x), (b) a feature line in s(x,η1) yields (c) a DD’s
attract curve, and at a center/saddle a PCD’s edge/attract curve.

Let us now consider a 3D vector field s(x,η1) concerning the whole
range of tangent vectors r = (−η1,1− η1)

T . This vector field is a
stack, where each slice η1 is a single 2D vector field ∇−1s(x) of
r = (−η1,1− η1)

T . In this way, SD, DD, and PCD are combined
with each other. The critical points form closed curves in s(x,η1),
so-called feature lines [27], which Figure 14 (b) illustrates. Let
s(t) = (x(t),y(t),η1(t))T be a feature line of s(x,η1): due to (i) it
links to a DD attract curve

ξξξ (t) = (ξ1 = τ1(x(t),y(t)),ξ2 = τ2(x(t),y(t)))T .

In addition, the feature line s(t) links to a curve in the PCD

ηηη(t) = (η1(t),s(x(t),y(t),η1(t)))T .

If feature line s(t) has a center behavior, then ηηη(t) is an edge curve. If
s(t) has a saddle behavior, then ηηη(t) is an attract curve: φ(ηηη(t)) = ∞.
Finally, due to transitivity, a CSP2D discontinuity curve ξξξ (t) links to a
discontinuity curve ηηη(t) in the corresponding CPC, which is summa-
rized in Figure 14 (c).

Case of CSP3D Based on the counter integral, we discuss the
CSP3D case in more detail now. Unlike the previous case, the SD
is three-dimensional. Thus, a DD line L maps onto a surface within
vector field q = ∇ξ1 ×∇ξ2 [18], given over the SD. The discontinu-
ities of a CSP3D correspond to feature lines in q. Hence, the density
φ(ηηη) = φ(LLL) in the PCD is given by the integration over the corre-
sponding surface area in q. All domains are now related to each other.

It is not a trivial task to calculate this area, but the behavior of the
surface area strongly depends on the area’s evolution in the environ-
ment of the critical point in q. Therefore, using the contour integral
for a 3D scalar field s gives this evolution behavior.

The 3D scalar field s of the contour integral f (s,η1), concerning a
certain DD’s tangent vector r = (−η1,1−η1)

T , is given by

s(x) = det
(

ξ1(x,y,z) rx
ξ2(x,y,z) ry

)
.

Each line L in the DD with constant r belongs to an iso-surface in s(x).
The vector field ∇s(x) codes the area’s contributions for the line L. In
contrast to q, the critical points in ∇s(x) are isolated points, with the
property that a critical point in ∇s(x) lies on a feature line in q, but not
vice versa: ∇s(x) = 0 → q = 0. Note: Would one collect and join the
critical points of ∇s(x) for the whole range of r, one would reveal the
feature lines of q. This way, vector field s(x) and q are related to each
other, i.e., the one is a kind of decomposition of the other. However,
a line L which touches a DD’s discontinuity point corresponds to a
critical point in ∇s(x). Thus, we need to investigate the behavior of
the integral contour at the critical points.
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Fig. 13. Linked Overlay Tool: feature points in one domain link mutual onto tangent lines of corresponding feature points in the other domain.

Two kinds of critical points in ∇s(x) are possible: a center or a
saddle critical point. Please note that a center in ∇s(x) appears if the
corresponding point on a feature line in q is also a center discontinuity.
The same applies for a saddle.

A center critical point corresponds to the introduced 3D maximum
behavior of the contour integral f (s,η1): the density φ is linearly
growing with the (Euclidean) distance to the critical point and is 0
at the critical point. Therefore, the density map from a center critical
point onto the PCD does not reveal a discontinuity. Besides, an alter-
native explanation for this is given by the smoothness effect: since a
center discontinuity yields an edge curve within the DD [18], it cannot
be a discontinuity within the PCD.

A saddle critical point corresponds to the introduced 3D’s minimum
behavior of the contour integral f (s,η1): The density φ has a local
maximum at the critical point which decreases with the (Euclidean)
distance to the critical point. Therefore, the density map from a saddle
critical point onto the CPC does not reveal a discontinuity, but a local
maximum curve, a so-called ridge curve (cf. [21]). This is an unex-
pected result because it means that discontinuity features completely
disappear within a corresponding CPC.

Finally, one special case needs to be discussed. If a CSP3D based
on the SDs of a CSP2D would be created just by stacking the two-
dimensional SDs one above the other, then the critical points in ∇s
would become features lines. However, such feature lines would be
structurally instable and disappear by adding noise.

5.3.3 Numerical Considerations about the CPC Rendering
During the CPC rendering, the numerical quantification error might
cause a poor sampling of lathy smooth regions within the PCD’s den-
sity. The more lathy the regions are, the stronger this effect might
be. In our discussion, this effect mainly concerns the edge curves in
DD, which correspond to a “quickly fallen” density function in PCD.
A poor quantification depends on the sampling’s resolution and yields
pseudo edges within the CPC which we denote as shadow edges. From
our experience, shadow edges are mainly weak artifacts which are get-
ting weaker by increasing resolution.

5.3.4 CPC Feature Curves Detection Algorithm
The CSP attract curves form also feature curves in the CPC and thus
need to be detected. In [18], algorithmic approaches have been intro-
duced in order to detect the CSP’s feature curves. By applying these
approaches, a feature curve is approximately given by a polyline L.
Through the curve-curve duality we know that curves of the involved
domains are related. Therefore, we have to map the polyline L in DD
onto the corresponding polyline in PCD, which approximates the cor-
responding curve in CPC.

A single line segment Li; i = 1, . . . ,k, with a startpoint/endpoint
Lis = (ξ1is

,ξ2is
)T and Lie = (ξ1ie

,ξ2ie
)T can be interpreted as the first

order approximation of the tangent vector on the DD’s feature curve at
a certain point. With the aid of Equation (4) the corresponding curve
point Łi in PCD can be approximately calculated by:

Łi =

(
0

ξ1is

)
+

ξ1ie
−ξ1is

(ξ1ie
−ξ1is

)− (ξ2ie
−ξ2is

)
·
(

1
ξ2is

−ξ1is

)
.

The polyline Ł approximates the corresponding discontinuity curve in
PCD with its line segments given by Łi/Łi+1.

5.3.5 Summary of the Feature Considerations

In this section we briefly summarize the investigations of features in
CPCs. First, the local features do not generate stable features. Further-
more, global features as attract curves of a CSP2D/3D form features
stable within the CPC. Nevertheless, the attract curves of CSP3D do
not map on discontinuity curves in CPC. Furthermore, edge curves in
general disappear due to the smoothness effect, but – depending on the
resolution – they might produce weak shadow edges. Figure 17 sum-
marizes the classification and their relations concerning the features.

CSP2D CPC
attract curve σ(ξξξ ) = ∞ appear as
(discontinuity)

case 1: center line in s(x,y,η1) → edge curve (discontinuity)
case 2: saddle line in s(x,y,η1) → attract curve φ(ηηη) = ∞ (discontinuity)

CSP3D CPC
attract curve σ(ξξξ ) = ∞ → ridge curve (no discontinuity)
(saddle discontinuity in qqq)
edge curve → disappear due to smoothness effect
(center discontinuity in qqq) but in practice: might appear as shadow edge

CSP2D/3D CPC
edge curve → disappear due to smoothness effect
(caused by boundary effects) but in practice: might appear as shadow edge

Fig. 17. Classification of the mapping of global features from CSP2D/3D

onto CPC. It is salient that only attract curves (infinite density) of CSP
form feature curves in the CPC.

6 APPLICATIONS

We illustrate the introduced features and concepts regarding their rela-
tions, in this section. The CPCs/CSPs are calculated on an Intel Core
2 Quad CPU in single core mode, with Linux OS and 3.5 GB RAM,
by using the approaches of [3, 4]/[14]; interpolations are done by ra-
dial basis function [8], and the features are calculated by [18] and the
approach of Section 5.3.4.

Figure 13 shows an example of the linked overlay tool (c.f. Sec-
tion 4.2) for the CSP2D

1 , with the underlying DD scalar fields:

CSP2D
1 :=

(
ξ1(x) = sin(x)·x+ cos(y)·y
ξ2(x) = cos(x)·y+ sin(y)·x

)
. (10)

From our theses in Section 5 it follows that a point on a feature curve in
one domain has to correspond to the tangent line of the corresponding
feature point in the other domain. This property can be simply shown
with the aid of our overlay tool by converging a radius against zero for
a point of interest. Using the point-line duality directly is not advisable
due to numerical reasons. However, it can be seen that this property
applies. Furthermore, other scientists can check our theses too with
minimal effort, just by using this linked overlay tool.
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Fig. 15. 2D Applications: (a) Example of “North Sea” data and (b) of synthetic scalar fields. (a/b,up) Visualization of “North Sea”/scalar field data.
(a/b,middle-left) CSP2D

north/CSP2D
2 and (a/b,middle-right) with green/gray colored attract/edge curves. (a/b,down-left) The corresponding CPC and

(a/b,down-right) with green/gray colored counterparts of the attract/edge curves, generated by the curve-curve duality: Attract curves of the CSP
correlate with feature curves of the CPC and are dominant, while edge curves disappear (smoothness effect), except weak shadow edges.
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Fig. 16. 3D Applications: (a) Example of “Cyclone” data and (b) of synthetic scalar fields. (a/b,up) Visualization of “Cyclone”/scalar field data.
(a/b,middle-left) CSP3D

cycl/CSP3D
2 and (a/b,middle-right) with green/gray-white colored attract/edge curves. (a/b,down-left) The corresponding CPC

and (a/b,down-right) with green/gray-white colored counterparts of the attract/edge curves: There are no correlations between CSP/CPC feature
curves, except saddle discontinuity-based attract curves; they do manifest as CPC’s maximum curves (ridges) or shadow edges, respectively.



Figure 15 shows different results for the 2D case: the first example
yields the CSP2D

north, based on the topmost slice of the “North Sea”
data set, which include flow information of the German Bight from
10/17/2008 (cf. [18, 19]). The second example yields the CSP2D

2 based
on a SD range of [1,10]× [1,10] and a resolution of 1600 × 1600,
where the underlying scalar fields of the DD are given by:

CSP2D
2 :=

(
ξ1(x) = sin(y)·sin(x)·x+ cos(y)·y
ξ2(x) = cos(y)·cos(x)·y+ sin(x)·y

)
.

It can be seen that the CSP’s attract curves either link to CPC’s attract
curves (saddle case) or edges curves (center case). In general, there is
a strong correlation between the attract curves of CSP and the features
of CPC. That applies also for the number of features in the different
domains (compare Figure 15 (a) with (b)): A larger feature number in
one domain also reveals a larger number of features within the other
domain. Furthermore, the CSP edge curves disappear within the CPC
due to the smoothness effect, except for some weak shadow edges.

Figure 16 shows several results for the 3D case: the first exam-
ple yields the CSP3D

cycl, based on the “Cyclone” data set [22], which
includes among others information about pressure and kinetic en-
ergy of a physical flow simulation of a hydrocyclone (over a 1273

SD). The second example yields the CSP3D based on a SD range of
[−2,3]× [−2,3]× [−2,3] and a resolution of 1400×1400, where the
underlying scalar fields of the DD are given by:

CSP3D
2 :=

(
ξ1(x) = sin(z)·sin(x)·x+ sin(y)·y+ sin(z)·z
ξ2(x) = sin(z)·sin(x)·y+ sin(y)·x+ sin(z)·y

)
.

In comparison to the CPC of the 2D case, the CPC of the 3D case
looks generally more blurred (cf. Section 5.3). It can be seen that
only the CSP’s attract curves (saddle discontinuities) link to smooth
maximum density curves within the CPC, or form shadow edges in
certain circumstances. All further features, as boundary curves or cen-
ter discontinuities, disappear. Also the number of CSP features does
not correlate to the number of the few CPC features (compare Fig-
ure 16 (a) with (b)). Altogether, it confirms that only the attract curves
of CSP2D/3D have a counterpart within the CPCs.

7 DATA ANALYSIS BY CSP/CPC: A FEW CONSIDERATIONS

In this section we discuss the progress concerning the data analysis
with CSPs/CPCs.

Article [18] has shown that the number of inverse image elements of
map function τ changes at discontinuity curves of a CSP2D/3D. Since
the features of CSP map onto features in the CPC, the same statement
also applies for them (inverse image property). Since the CSPs/CPCs
are appropriate as visualization method for a variety of data sets, e.g.,
physical, statistical, or other, it is not trivial to figure out what this ab-
stract semantic property means for a certain case. Nevertheless, these
structures are in the data, thus relevant for the analysis, and detectable
by those features.

Furthermore, the SD boundary edges always yield edge curves in
the CSP2D/3D as visual result of the SD’s finiteness. Thus, the CSP
edge curves are not relevant for the data analysis because they have
nothing to do with the data. On the contrary, the attract curves are
really caused by the data. The mapping function τ between SD and
DD is always based on the underlying data and consequently the (data-
based) attract curves represent characteristics of the data. Figure 18
illustrates the CSP2D

1 (Equation (10)) and CSP3D
1 , which consists of

the following two DD scalar fields

CSP3D
1 :=

(
ξ1(x) = sin(x)·x+ sin(y)·y+ sin(z)·z
ξ2(x) = sin(x)·y+ sin(y)·x+ sin(z)·y

)
.

It can be seen that the attract curves are characteristic for the under-
lying scalar fields, while the boundary caused edge curves are volatile
and unspecific.

There is one special case concerning the CSP3D which needs to
be further discussed: the center discontinuities (cf. Figure 1). One

Fig. 18. Relevance of CSP’s discontinuity features: (up, left to right)
CSP2D

1 of spatial domain x∈ {1,6}, x∈ {1,8}, and x∈ {1,10}. (down, left
to right) CSP3D

1 of spatial domain x ∈ {1,3},x ∈ {1,3.5}, and x ∈ {1,4}:
The data characteristic attract curves (yellow arrows) remain at the
same position and resize depending on the considered SD while edge
curves (blue arrows) are volatile and unspecific.

the one hand, they form edge curves, and on the other hand they are
caused by the data-based mapping function τ . Are they also relevant
for the analysis? Not necessarily, as we will explain as follows: A cen-
ter discontinuity is a by-product of two saddle discontinuities [18] due
to the mathematical properties of the underlying vector field q. Shan-
non [23] points out that information is the measure of unpredictability.
If there are two saddle discontinuities, it is predictable that there is
one center discontinuity belonging to them, i.e., no further informa-
tion about the data is available. Furthermore, the pathway of the sad-
dle discontinuities specifies the pathway of the corresponding center
discontinuity, i.e., also no further information about the data is avail-
able. In summary, neither the existents nor the pathway of the center
discontinuities contain more or new information as the corresponding
saddle discontinuities already convey. Finally, it follows for CSP2D/3D

that the attract curves are relevant for the data analysis. Fortunately,
those attract curve features, which are relevant for the data analysis, re-
main in a CPC (cf. Figure 17), while non-relevant edge curve features
disappear due to the smoothness effect: a CPC conveys only relevant
features (relevance property), a CSP conveys relevant as well as non-
relevant features. This shows an advantage of the CPCs in comparison
to the CSPs and concerning the data analysis.

8 CONCLUSION AND FUTURE WORK

In this paper, we investigated the features of CPCs, their classification,
and their relations to known CSP features. With the linked overlay tool
we proposed a method to check our theses by other scientists, and gave
an algorithmic detection approach for the CPC features based on the
curve-curve duality. Additionally, we described the smoothness effect
which blurred CSP edges, and shadow edges caused by numerical rea-
sons. Concluding, we introduced the inverse image property and the
relevance property of CPCs, which are new contributions concerning
the task of a CPC/CSP-based data analysis.

The statement of the paper is that only CSP’s attract curves – which
are the relevant features concerning the data analysis – map stable and
form the dominant CPC features, while other features disappear. Thus,
especially for unexperienced users the CPC is less confusing.

What remains for the future is to develop feature-based reconstruc-
tion approaches for CPC/CSP and appropriate Linking & Brushing [6]
tools for CPCs, in order to investigate further properties between fea-
tures and underlying data to further improve the task of data analysis.
Additionally, the analysis of the features for CPCs/CSPs concerning
time-dependent multivariate data will be done.
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