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Abstract—Human action recognition requires the description
of complex motion patterns in image sequences. In general,
these patterns span varying temporal scales. In this context,
Lagrangian methods have proven to be valuable for crowd
analysis tasks such as crowd segmentation. In this paper, we
show that, besides their potential in describing large scale motion
patterns, Lagrangian methods are also well suited to model
complex individual human activities over variable time intervals.
We use Finite Time Lyapunov Exponents and time-normalized
arc length measures in a linear SVM classification scheme. We
evaluated our method on the Weizmann and KTH datasets. The
results demonstrate that our approach is promising and that
human action recognition performance is improved by fusing
Lagrangian measures.

I. INTRODUCTION

Human action recognition is an important computer vision
task, since it pertains to a multitude of application domains,
ranging from automatic video surveillance to semantic video
indexing and retrieval. In this paper, we aim at providing a
reliable solution for recognizing basic human actions including
(among others) walking, running and boxing. The ability
to identify these basic actions would subsequently lead us
to build a solution to recognize more complex actions, in
particular in the scenarios involving more than one basic
action.

One category of popular approaches to capture the motion
dynamics in image sequences are based on optical flow
computation. Optical flow methods describe the motion in
an image sequence by means of vector fields, which encode
the transport and correlation of image information between
two consecutive frames. Recent improvements in optical flow-
based approaches allow for an efficient extraction of optical
flow fields with a diversity of methods, offering a variety of
trade-offs between speed and accuracy of the motion extrac-
tion. Extracting the transport vector fields for a complete image
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sequence further helps in analyzing global motion features in
a spatio-temporal context i.e. in the space time domain. The
sequence of optical flow fields can be treated as an unsteady
vector field and allows for the application of the Lagrangian
analysis framework, which has been introduced in the context
of dynamical systems. Lagrangian analysis is based on particle
trajectories in the space time domain. In this context, the
concept of Lagrangian Coherent Structures (LCS) has proven
to be a powerful tool to describe temporally complex spatial
motion patterns. An overview of this research topic has been
provided by Peacock et al. [1] and a general presentation of
methods tailored towards flow analysis has been presented
by Pobitzer et al. [2]. One popular manner to describe the
notion of LCS in time-varying vector fields is the Finite Time
Lyapunov Exponents (FTLE) method introduced by Haller et
al. [3]. In addition to these promising approaches, our work
focuses on the description of individual motion behaviors
using FTLE.

The classic FTLE approach has been developed in the
context of fluid flow analysis. One major difference is that,
optical flow fields are in general not divergence free, and only
represent a projection of a higher dimensional motion process.
Still most of the captured Lagrangian features are suitable to
describe motion processes in images, and can be considered
as strongly correlated to the movement, i.e. human motion in
the underlying image sequence. In our work, we focus on two
important Lagrangian motion features for the description of
human actions in images:

• Motion boundaries denote areas of high particle trajec-
tory separation and segment areas of different motion
patterns of varying time intervals. Those are directly
captured using the FTLE descriptor.

• Areas of coherent flow motion gather regions of similar
speed over the respective time interval. This corresponds
to a clustering of trajectories of similar flow geometry.



A detailed discussion of those features in the context of optical
flow field analysis is provided in Section III.

II. RELATED WORK

Video representation and learning are the two components
of an action recognition system. Many learning-based ap-
proaches for human action recognition have been proposed in
the literature. In this paper, we concentrate on the recognition
of actions performed by a single actor in videos and discuss
existing works addressing this task. The paper by Poppe et al.
[4] provides a survey of vision-based human action recognition
in broad situations.

Support Vector Machines (SVMs), as one of the existing
discriminative approaches, have been extensively applied in
this context, and have proven to be successful. For instance,
Schindler and Van Gool [5] represent human actions by object
shape and optical flow features, which they use for training K
linear one-vs-all SVM action classifiers. Positive and negative
training samples are weighted differently to account for the
problem of imbalanced training data. Bregonzio et al. [6]
represent actions as clouds of space-time interest points.
They also use SVMs for classification, but, unlike [5] where
linear kernels are used, they use radial basis function (RBF)
kernels. Boosting, another discriminative approach, has also
been employed in the context of action classification. Fathi and
Mori [7] use the AdaBoost algorithm both for feature selection
and action classification. Feature selection is performed on
mid-level motion features which are constructed from low-
level optical flow information using AdaBoost. AdaBoost is
also used as the final action classifier based on the selected
mid-level motion features.

Alternative to the discriminative approach, in the generative
approach, the joint occurrence of visual data and action labels
is modeled. Niebles et al. [8] represent video sequences
as collections of spatio-temporal words which are based on
spatio-temporal interest points. They use two topic modeling
methods: the probabilistic Latent Semantic Analysis (pLSA)
model and Latent Dirichlet Allocation (LDA). A separate topic
model is learned for each action class and new samples are
classified by using the constructed action topic models.

k-Nearest Neighbor (k-NN) classifiers are used for action
recognition in [6] and [9]. In [6], video samples are represented
as clouds of space-time interest points and k-NN classification
is performed using these video representations. In [9], each
image sequence is represented as a bag of kinematic modes
and is mapped into a kinematic mode-based feature space
where an action is given the same label as its nearest neighbor
in the feature space.

III. METHOD

As described in Section I, we can treat a series of optical
flow fields as a time-dependent vector field, and define the
space time domain by interpreting time as an additional axis.
Formally, this representation can be described as follows:
Given the optical flow vector field v(x, t), at every specified
space-time point (x0, t0) ∈ D we can start a path line that

denotes a particle trajectory. This can be formulated in terms
of an initial value problem as follows:
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The path lines are extracted by computing the flow map

defined as ϕτ (x, t0) = ϕ(x, t0, τ). The flow map describes a
mapping of an initial position to its advected position after
a predefined integration time τ starting at t0. Combining all
positions on these trajectories of one specific point within the
interval [t0, t0+τ ] creates a polynomial curve denoted as path
line.

To analyze motion properties in a feature-oriented manner
the concept of LCS has been proposed. LCS directly describes
properties of neighboring trajectories in the space time do-
main [1]. In video analysis, this corresponds to the notion of
the edge of an enclosed moving object within the image. One
crucial aspect is the choice of the time interval parameter τ ,
that defines the temporal scale of features we are interested
in. The most prominent techniques to extract LCS are FTLE
presented by Haller et al. [3]. LCS are shown to be closely
related to ridges in the resulting FTLE scalar field [10].

We propose to apply a set of Lagrangian measures to
describe different human actions by LCS. These measures
present several advantages. The most notable one is the ability
of Lagrangian measures to transform the motion information
about LCS of a given time interval τ into a 2D space. By
applying a feature extraction method at this 2D space the
resulting feature considers implicitly the motion information
of the observed object. In addition, this resulting feature can
be classified as a spatio-temporal feature.

A. Lagrangian Descriptors

Given the optical flow field v(x, t) the first measure we use
in our framework is the FTLE.

FTLE(x, t, τ) =
1

τ
max {µ1, µ1} (1)

with µ the eigenvalue defined as:

µi = ln
√
λi(∇T∇) (2)

and ∇ the spatial gradient defined as:

∇(x, t, τ) =
∂ϕ(x, t, τ)

∂x
(3)

The FTLE can be computed both in forward and backward
directions resulting in the description of FTLE+ and FTLE- as
described by Garth et al. [11] (see Figure 2(b,c)). Lagrangian
features in the FTLE+ field define regions of repelling LCS,
while FTLE- features describe attracting LCS structures over
the considered time interval. Intersection points of the FTLE+
and FTLE- features group areas of coherent motion within
the field. One recent work in this context is presented by
Bachthaler et al. [12]. Using this notion, ridges can be reinter-
preted as motion barriers defined over a finite time scope [3].
The parameter τ determines the length and complexity of



Fig. 1. Concept of Lagrangian descriptors obtained from a given image sequence using a series of optical flow fields.

those ridge structures. As shown in Figure 2, the FTLE field
appears as an excellent tool to model the motion boundaries of
a moving person as it describes the behavior of trajectories in
terms of transport barriers and separates regions of coherent
flow behavior. These motion boundaries are not only good
cues for the outline of person detection and crowd description
as stated in [13], [14], but they also constitute good cues for
person description [15].

In general, features in the FTLE field are explicitly extracted
in terms of height ridges that require an additional ridge
extraction procedure. This ridge extraction tends to be noise-
sensitive in the underlying field. We avoid explicitly extracting
ridge structures by computing Histogram of oriented Gradients
(HoG) [16] of the FTLE field. The HoG descriptor partitions
a detector window into a dense grid of cells, with each cell
containing a local histogram over orientation bins. The HOG is
modified such that the FTLE field of the forward (FTLE+) and
backward (FTLE-) integration is calculated at each pixel and
converted to an angle (i.e. orientation). Each pixel associated
to an angle contributes to the corresponding orientation bin
with a vote weighted by the overall FTLE magnitude. The
post processing grouping of the cells into blocks and the
robust normalization are those of the conventional HOG.
While FTLE describes the separation between neighboring
trajectories, for the description of motion patterns we are
usually also interested in areas of similar motion behaviors
over time. This can be formulated using further geometric
features of the path lines such as the time-normalized arc
length, that corresponds to the accumulated average velocity at
a certain point in the space time domain. A detailed discussion
of alternative relevant path line attributes for flow feature
description has been presented by Pobitzer et al. [17]. The
time-normalized arc length (ΛarcL ) of given time t0 and an
integration interval τ is defined as

ΛarcL(x, t0) =

∫
||v(ϕ(x, t0, τ))||2∂τ (4)

The ΛarcL denotes at each position the length of the path
line which is equivalent to the overall speed at the respective
position. Finally, the computation of HoGs is performed on
the ΛarcL field to extract the spatio temporal pattern.

B. Lagrangian Classifier

In order to compute the motion information, we use the
GPU accelerated dense optical flow method proposed by
Werlberger et al. [18]. For each video frame, we apply a multi-
scale HoG detector as described in the seminal work of Dalal
and Triggs where the HoG person detector was introduced
[16]. The difference is that our detector uses the FTLE-HoG
and the ΛarcL -HoG instead of the conventional HoG.

Concerning the classification, we train linear multi-class
SVMs. Training linear SVMs is faster and simpler than train-
ing SVM with other kernels e.g. RBF kernels. As demonstrated
in [16], kernels other than linear would only lead to a slight
performance improvement, but at the detriment of increased
computational cost.

FTLE-HoG and ΛarcL -HoG descriptors provide comple-
mentary information about an ongoing action in a video.
Therefore, these two descriptors are fused in an early fusion
manner before training SVMs. We choose to perform fusion
with an equal weighting of FTLE-HoG and ΛarcL -HoG de-
scriptors, since we think that these descriptors provide equally
valuable motion information. Additionally, assigning different
weights to the FTLE-HoG and ΛarcL -HoG descriptors would
probably cause a bias towards the datasets used to evaluate
the accuracy of the method.

IV. PRIVACY ASPECT

Working with image data obtained from surveillance videos
or publicly available image data further introduces another
important aspect during automated processing of the image
sequences: The privacy of the recorded individuals. In many
existing applications, image data and subsamples of existing
images has to be explicitly stored or processed. Due to the
additional layer of abstraction in our processing cycle, we do
not have to store image sequences directly, but optical flow
fields, that only encode abstract motion patterns. In general,
the recognition of person-related features extracted from ab-
stract Lagrangian motion patterns is much more difficult if not
even impossible.

V. PERFORMANCE EVALUATION

We tested our method on two standard datasets. These are
the Weizmann and the KTH datasets. Experiments show that
the combined use of FTLE-HoG and ΛarcL -HoG features for
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Fig. 2. Illustration of the Lagrangian descriptor for the Weizmann sequence.(a) Reference image of frame 1, sequence wave2 (top) and walk (bottom) with
the corresponding FTLE+(b), FTLE-(c) and ΛarcL (d) field. (e-g) Average of the FTLE+,FTLE- and ΛarcL field for all corresponding sequences.

action recognition is promising, as results are comparable to
state-of-the-art action recognition solutions.

A. Datasets

Weizmann Dataset - The Weizmann dataset was introduced
in [19]. This dataset contains 9 actors performing 9 different
types of actions (bending, galloping sideways, jumping jack,
jumping forward on two legs, jumping in place on two legs,
skipping, walking, waving one hand and waving two hands).
Each video clip, which lasts about 2 seconds at 25 frames per
second (fps), contains one actor performing one action.

KTH Dataset - The KTH dataset was introduced in [20].
The dataset contains 25 actors performing 6 different types of
actions (boxing, hand clapping, hand waving, jogging, running
and walking). The video clips are also recorded at 25 fps with
varying durations. Like in the Weizmann dataset, each video
clip contains one actor performing one action in 4 different
scenarios including outdoors, outdoors with scale variation,
outdoors with different clothes and indoors.

B. Experimental Setup

SVMs were trained using video frames which are repre-
sented with FTLE-HoG and ΛarcL -HoG descriptors. Our
approach was evaluated on the Weizmann dataset using Leave-
One-Actor-Out Cross-Validation (LOAOCV). We used the
video clips of 8 actors in the Weizmann dataset as the training
data and the video clips of the remaining actor as the test data.
This procedure was repeated by permuting the actors selected
for training and testing, and the results were averaged. For
the KTH dataset, video clips of 25 actors were splitted into
training, validation and test parts using the provided standard
split [21].

FTLE-HoG and ΛarcL -HoG features of video frames are
extracted as explained in Section III using cell grids of sizes
8 and 16.

C. Results and Discussion

Table I reports the classification accuracies of our method
compared to state-of-the-art methods on the Weizmann dataset.
We achieved 96.03% recognition accuracy with the fused
FTLE-HoG and ΛarcL -HoG features of cell size 8, and
97.55% recognition accuracy with a cell size of 16. This
demonstrates the potential of our approach for human action
recognition, as the results are comparable to those of state-of-
the-art approaches.

TABLE I
CLASSIFICATION ACCURACIES ON THE WEIZMANN DATASET

Method Accuracy (%)
Our method (cell size 8) 96.03
Our method (cell size 16) 97.55
Schindler et al. [5] 100.0
Bregonzio et al. [6] 96.66
Fathi et al. [7] 100.0
Niebles et al. [8] 90.0
Ali et al. [9] 94.75

In Figure 3, the confusion matrix of recognition results
for the Weizmann dataset is illustrated. The confusion matrix
represents the performance of our method with the fused
FTLE-HoG and ΛarcL -HoG features of cell size 16. As
illustrated, skip and jump actions are the most difficult actions
to discriminate. FTLE-HoG and ΛarcL -HoG features of these
two actions are similar, which causes the method to perform
poorer compared to other actions. By including more discrim-
inative motion information such as ΛarcL -HoG features in



both X and Y directions, we expect to better represent human
actions.
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Fig. 3. Confusion matrix on the Weizmann dataset with FTLE-HoG + ΛarcL

-HoG features of cell size 16 (Mean accuracy: 97.55).

We performed additional experiments on the Weizmann
dataset to show the effect of feature fusion in action recogni-
tion. As shown in Table II, fusing FTLE-HoG and ΛarcL -HoG
features of video frames improved the recognition accuracy
of our method on the Weizmann dataset. This is due to the
complementary information that FTLE-HoG and ΛarcL -HoG
features provide for an ongoing human action in a video
sequence.

TABLE II
FEATURE FUSION ANALYSIS ON THE WEIZMANN DATASET

Cell Size FTLE ΛarcL FTLE + ΛarcL

8 94.27 93.75 96.03
16 95.1 95.51 97.55

We also performed tests on the KTH dataset which is a
challenging dataset due to indoor and outdoor video sequences
with different lighting conditions. Additionally, the video
sequences contain zoom-in and zoom-out during the perfor-
mance of actors. The results of evaluation are presented in
Table III which also shows results of state-of-the-art methods
on the KTH dataset. There is no unique test methodology
on this dataset, unlike the Weizmann dataset. Fathi et al.
[7] use 16 actors of the dataset as the training data and the
remaining 9 actors as the test data. Bregonzio et al. [6] and
Niebles et al. [8] apply LOAOCV method, where Schindler
et al. [5] use 5-fold cross validation. We followed the test
strategy proposed in [9] and used 8 actors for training, 8 actors
for validation and the remaining 9 actors for testing. On the
dataset, we achieved 87.84% recognition accuracy with the
fused FTLE-HoG and ΛarcL -HoG features of cell size 8,
and 86.11% recognition accuracy with a cell size of 16. The
performance is lower than the performance on the Weizmann
dataset, but is still comparable to those of state-of-the-art. This
shows that our method is able to deal with challenging video
sequences. However, the evaluation on the KTH dataset has to

be interpreted carefully. Although we achieved a performance
slightly lower than the method achieving the best performance
[6], it is difficult to affirm that a given method performs
better. Indeed, each work evaluated on this dataset used a
different training and test methodology which makes a direct
comparison irrelevant. Additionally, the difference and also the
advantage of our method resides in transforming the motion
information of an individual in a given time interval into a 2D
space. Therefore, feature analysis is performed on a simplified
representation instead of working on a 3D space.

TABLE III
CLASSIFICATION ACCURACIES ON THE KTH DATASET

Method Test Methodology Accuracy (%)
Our method (cell size 8) Splits (into 3) 87.84
Our method (cell size 16) Splits (into 3) 86.11
Ali et al. [9] Splits (into 3) 87.7
Fathi et al. [7] Splits (into 2) 90.50
Schindler et al. [5] 5-fold CV 92.70
Bregonzio et al. [6] LOAOCV 94.33
Niebles et al. [8] LOAOCV 83.33

The confusion matrix in Figure 4 allows to visualize the
performance of our method with the fused FTLE-HoG and
ΛarcL -HoG features of cell size 8 on the KTH dataset. As
illustrated, jogging - running, jogging - walking, hand clapping
- hand waving, and boxing - hand clapping action pairs are
the most confused action pairs. This is intuitive, since these
confused action pairs have similar motion patterns. The results
on the KTH dataset showed that further motion features such
as ΛarcL features both in X and Y directions are needed
for better discrimination between these similar actions. For
instance, the action “hand waving” shows motion both in X
and Y directions, but the action “hand clapping” shows motion
mainly in the X direction. Motion features in the X direction
of these two actions are similar to each other and this causes
the method to perform poorly.
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Fig. 4. Confusion matrix on the KTH dataset with FTLE-HoG + ΛarcL

-HoG features of cell size 8 (Mean accuracy: 87.84).

We performed feature fusion analysis also on the KTH
dataset. As shown in Table IV, fusing FTLE-HoG and ΛarcL



-HoG features of video frames improved the recognition
accuracy of our method also on the KTH dataset. This confirms
our statement that the information provided by the FTLE-HoG
and ΛarcL -HoG features complement each other.

TABLE IV
FEATURE FUSION ANALYSIS ON THE KTH DATASET

Cell Size FTLE ΛarcL FTLE + ΛarcL

8 82.52 82.65 87.84
16 79.62 81.92 86.11

VI. CONCLUSIONS AND FUTURE WORK

We presented a framework based on Lagrangian methods
which makes use of FTLE and time-normalized arc length
measures for human action recognition. Our method differs
from other human action recognition approaches, since with
Lagrangian measures we transform the motion information
of an individual in a given time interval into a 2D space.
Our experiments on the Weizmann and KTH datasets proved
that FTLE and time-normalized arc length measures are well
adapted to model individual human activities. The experi-
ments also proved that these features provide complementary
information about an ongoing action in a video sequence
and that by fusing these features very promising results
can be achieved. Our ongoing work includes enriching the
representation of motion within a video with time-normalized
arc length measures both in X and Y directions. By including
such information, we expect an improvement in performance.
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