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Blood Flow Clustering and Applications in
Virtual Stenting of Intracranial Aneurysms

Steffen Oeltze, Dirk J. Lehmann, Alexander Kuhn, Gábor Janiga, Holger Theisel, Bernhard Preim

Abstract—Understanding the hemodynamics of blood flow in vascular pathologies such as intracranial aneurysms is essential
for both their diagnosis and treatment. Computational Fluid Dynamics (CFD) simulations of blood flow based on patient-individual
data are performed to better understand aneurysm initiation and progression and more recently, for predicting treatment success.
In virtual stenting, a flow-diverting mesh tube (stent) is modeled inside the reconstructed vasculature and integrated in the
simulation. We focus on steady-state simulation and the resulting complex multiparameter data. The blood flow pattern captured
therein is assumed to be related to the success of stenting. It is often visualized by a dense and cluttered set of streamlines.
We present a fully automatic approach for reducing visual clutter and exposing characteristic flow structures by clustering
streamlines and computing cluster representatives. While individual clustering techniques have been applied before to
streamlines in 3D flow fields, we contribute a general quantitative and a domain-specific qualitative evaluation of three state-
of-the-art techniques. We show that clustering based on streamline geometry as well as on domain-specific streamline attributes
contributes to comparing and evaluating different virtual stenting strategies. With our work, we aim at supporting CFD engineers
and interventional neuroradiologists.

Index Terms—Blood Flow, Aneurysm, Virtual Stenting, Clustering, Evaluation.
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1 INTRODUCTION

I NTRACRANIAL aneurysms, also referred to as cerebral
aneurysms, represent a pathological, balloon like dilation

of cerebral vasculature due to a weakness of the arterial
wall. They occur with a prevalence of about 2% in Western
Europe [1]. Their rupture is associated with a mortality rate
of ≈ 50%. Among other treatment options, stenting plays an
increasingly important role. In stenting, the flow is diverted
around the aneurysm by an expandable mesh tube (stent),
thereby reducing and decelerating its inflow (Fig. 1(a)).

The blood flow pattern is among the hemodynamical
parameters that are assumed to be related to the success
of stenting [2], [3], the development of thrombosis (blood
clotting, which is a desirable outcome of stenting) [4], and
the risk of aneurysm rupture [5]. A better understanding of
these relations may contribute to patient selection for flow
diverting stents. While they often lead to thrombosis and
reverse remodeling, adverse effects leading to late rupture
were also observed [3]. With the increased number of
treatment options and available types of stents, the need
for decision support is strongly increased.

Computational Fluid Dynamics (CFD) simulations,
which generate patient-specific hemodynamic data, are em-
ployed to better understand the effect of stents on aneurys-
mal hemodynamics and for predicting treatment success
[2], [6], [7]. In virtual stenting, different types of stents
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are modeled at different locations inside the reconstructed
vascular anatomy and integrated in the simulation. We
focus on steady-state simulations since major aspects of
aneurysmal hemodynamics may be inferred from steady
flow [8]. The simulation results in a complex multiparame-
ter dataset comprising several scalar and vectorial attributes.
The blood flow pattern captured therein, is often visualized
for investigation by a dense and cluttered set of streamlines
colored according to one of the scalar attributes.

We present a fully automatic approach for reducing
visual clutter and exposing characteristic flow structures
by grouping similar streamlines and computing group rep-
resentatives. We quantitatively evaluate three conceptually
different techniques for the grouping: k-means cluster-
ing, Agglomerative Hierarchical Clustering in four varia-
tions (single link, complete link, average link, and Ward’s
method), and Spectral Clustering. While each individual
technique has been applied to streamlines in 3D flow fields
[9], [10], [11], [12], the quality of their results has not
been compared before. The gained insight is valuable for
all applications employing streamline clustering.

Cluster representatives, which summarize the complex
blood flow, are derived from the clustering result. We adapt
a type of representative that is employed in clustering
fiber tracts of the human brain. In a qualitative expert
evaluation of visual blood flow summaries, we compare
the quantitatively best performing clustering techniques and
the corresponding representatives. Furthermore, we show
that clustering streamlines also based on domain-specific at-
tributes supports the evaluation of virtual stenting strategies.
For instance, clustering based on the local residence time
of blood flow within the aneurysm gives hints on potential
locations of thrombosis initiation.
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In summary, our contributions are:

• Quantitative evaluation of three conceptually different
streamline clustering techniques

• Visual summary of flow patterns and design lessons
• Expert evaluation of visual flow summaries
• Application-specific insight from clustering domain-

specific streamline attributes
• A tailor-made type of cluster representative

We aim at supporting CFD engineers in investigating sim-
ulation results. In a dense sampling of aneurysmal flow
by thousands of streamlines, they rely on filtering these
lines, a locally restricted streamline seeding or on global
hemodynamic parameters. Minor, local changes of the flow
pattern yet influencing the success of stenting, may remain
unnoticed. We further aim at supporting interventional
neuroradiologists in developing a patient-specific treatment
strategy. CFD results are not yet part of the clinical routine.
Hence, the physicians have little experience in investigating
flow data. Our visual flow summary simplifies the access
to flow data, it is easy to read, and it contributes to the
communication between CFD engineers and physicians. We
employ our approach amongst others to data of the Virtual
Intracranial Stenting Challenges in 2009 and 2010.

2 MEDICAL AND TECHNICAL BACKGROUND

This section briefly overviews the treatment of intracranial
aneurysms, introduces the research field virtual stenting,
and describes our data generation pipeline.

2.1 Treatment of Intracranial Aneurysms

Intracranial aneurysms usually develop somewhere at the
Circle of Willis. Their shape may be characterized as
saccular, fusiform or dissecting with saccular having by
far the highest prevalence [13]. The morphological features
of a saccular aneurysm are illustrated by Figure 1(b).
Most aneurysms remain undetected until rupture. While
surgical clipping has been the gold standard in treatment
for decades, the number of endovascular interventions is
increasing. They bear less intraoperative risk and may
be applied, e.g., by an interventional neuroradiologist, to
aneurysms which are difficult or impossible to reach for
a surgeon [14]. In coiling, the aneurysm is filled with
platinum coils to promote thrombosis, which may eventu-
ally seal the aneurysm. Self expanding, high-profile, flow-
diverting stents provide a promising alternative to coiling in
patients with complex aneurysms (Fig. 1(a)). They reduce
and decelerate the blood circulation into the aneurysm,
thereby causing a prolonged residence time, which in turn
promotes thrombosis formation [13].

Despite the progress in interventional techniques, the
associated risks persist, e.g., injury of the aneurysmal wall
during stent insertion. A detailed risk and benefit estimation
and a deeper insight into the hemodynamics of blood flow
that cause aneurysm development and rupture are necessary.

(a) (b)
Fig. 1. (a) Flow diverting stent and its deployment
(arrow indicates flow direction). (b) Morphological fea-
tures of a saccular aneurysm (bold) and subdivision of
the surrounding vascular domain (red lines).

2.2 Virtual Stenting
Virtual stenting (VS) is a collaborative effort between CFD
engineers, physicians, and computer scientists. Its main
objectives are supporting clinical decision making and stent
design. In the former, questions such as “Is the vascular and
aneurysmal morphology eligible for stenting?” and “Which
stent should be used and where should it be placed?” need
to be answered. In stent design, different properties, e.g.,
grade of mesh porosity and strut size, and their impact on
the hemodynamics of blood flow are investigated.

One challenge in VS is comparing results of different
CFD simulations, e.g., before and after stenting [6]. We
support a comparison by visual summaries of blood flow.
So far, it is often based on global values such as aneurysmal
inflow rate [15]. Sometimes, the aneurysm wall is colored
according to a hemodynamic parameter and presented in
a side-by-side view [6]. Streamlines are employed for
comparing flow patterns. They are often seeded on the
ostium and displayed side-by-side [2], [6], [16]. However,
either the entire set of lines is displayed leading to visual
clutter or representative lines must be selected manually.

2.3 Hemodynamic Data Generation Pipeline
We briefly summarize our hemodynamic data generation
pipeline (see [15], [17] for details). First, image data of
the aneurysm morphology including the vasculature in
the close surrounding are acquired, e.g., by 3D rotational
angiography or Computed Tomography (CT) angiography.
Next, the aneurysm and the vasculature are segmented via
thresholding. Afterwards, a surface mesh of the vessel wall
is reconstructed from the segmentation result and optimized
[18]. Then, the ostium is extracted [19]. It separates the
aneurysm from the parent vessel and approximates the
original vessel wall (Fig. 1(b)). It is frequently used to
explore the flow into the aneurysm, e.g., by seeding stream-
lines there [20]. Next, the stent geometry is modeled and
deployed to the vessel wall. Finally, a volume mesh is con-
structed based on the surface meshes of the vessel wall and
the stent using ANSYS IcemCFD (Ansys Inc., Canonsburg,
PA, U.S.). Fluid flow simulations are performed in ANSYS
Fluent 12 (Ansys Inc., Canonsburg, PA, U.S.).
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3 RELATED WORK ON PARTITION-BASED
FLOW VISUALIZATION

Flow visualization techniques have been categorized by
Post et al. [21] into direct, texture-based, geometric, and
feature-based techniques. Salzbrunn et al. [22] added the
class of partition-based techniques, which decompose a
flow field based on vector values, integral curve properties
or topological features. Blood flow clustering based on
vector values has been presented in the context of cardiac
blood flow [23]. However, we follow the arguments in [10]
and advocate the use of integral curves since they represent
continuous flow patterns traced over the domain instead of
a very local vectorial flow information. We briefly recapit-
ulate approaches for flow decomposition based on integral
curves and classify them into user-guided and automatic
partitioning. For State-of-the-Art reports on topology-based
decomposition and visualization of flow, see [24], [25].

3.1 User-Guided Flow Partitioning

The approaches in this class decompose a set of integral
curves guided by the user. Salzbrunn and Scheuermann
[26] propose combined Boolean predicates based on prede-
fined scalar quantities, which determine for each streamline
whether it has a desired property. Predicates on pathlines
are applied to the visual analysis of measured blood flow in
aortic aneurysms [27]. A residence time predicate is used
for evaluating blood clotting. In [28], a visual analytics
approach is proposed for filtering pathlines based on local
and global pathline attributes, e.g., curvature and Lyapunov
exponent. Pobitzer et al. [29] demonstrate the application
of dimension reduction to the set of attributes in order to
detect relevant, independent ones. Two other approaches let
the user specify interesting integral curves or curve parts
in observation instead of attribute space. Advanced virtual
probing of measured cardiovascular flow by seeding inte-
gral curves on a flexible probing geometry is presented in
[30]. Gasteiger et al. employ a lens metaphor for generating
focus-and-context visualizations of streamline parts [17].

The lens metaphor facilitates only a local and view-
dependent inspection of the flow pattern. It emphasizes or
attenuates all streamline parts inside the lens but it does
not reduce visual clutter with respect to the flow pattern.
Neither lens nor virtual probing deliver reproducible and
quantifiable results. Line predicates and the visual analytics
of pathline attributes require the user to define attributes and
attribute value ranges of interest in order to compose sets
of lines, which are homogenous with respect to a certain
attribute or a combination of attributes. Automatic flow
partitioning approaches employ a data-driven strategy for
creating such sets and are hence self-tuning with respect to
differences in the flow across aneurysms.

3.2 Automatic Flow Partitioning

Our work is strongly related to approaches, which automat-
ically partition a set of integral curves by means of cluster-
ing, i.e. grouping similar curves. These approaches differ in

the clustering technique and in the similarity measure. Chen
et al. propose a two-stage k-means clustering [9]. The initial
rough geometry-based partitioning is refined by taking vec-
tor and shape properties into account. Both stages are based
on Euclidean distance as the similarity measure. Cluster
representatives are the streamlines closest to the cluster
centroids. In [12], Agglomerative Hierarchical Clustering
(AHC) with average link has been used for partitioning.
The authors propose a similarity measure that facilitates an
interactive, cluster-based exploration of flow with seeding
rakes. A saliency-guided streamline seeding is followed
by AHC with single link in [10]. Streamlines at cluster
boundaries are displayed as representatives. Gasteiger et
al. employ local streamline properties to identify and group
lines that constitute the inflow jet, which is correlated with
aneurysm rupture [31]. Rössl and Theisel discuss a spectral
embedding of streamlines [11]. They demonstrate Spectral
Clustering (SC) in the embedding space and compare
various similarity measures. Similar to the clustering of
integral curves is the clustering of fiber tracts extracted from
Diffusion Tensor Imaging (DTI) data. In [32], fiber tracts
are partitioned by means of a specialized SC approach.
Three types of cluster representatives are investigated in
[33]. Moberts et al. evaluate three variants of AHC and four
similarity measures for clustering fiber tracts [34]. A new
similarity measure in conjunction with AHC using single
link is introduced in [35].

AHC, k-means, and SC are the most widely used tech-
niques for clustering streamlines (and fiber tracts). How-
ever, the quality of their results in this context has not
been individually assessed and compared. We quantitatively
evaluate the three techniques, including four AHC variants,
by means of internal cluster validity indices (Sec. 5.4). In
a qualitative expert evaluation of the best performing tech-
niques, we identify the most appropriate one for clustering
blood flow (Sec. 6.4). While the clustering in related work
is mostly restricted to streamline geometry and derived
geometrical attributes, we extend it to domain-specific
attributes. We adopt the idea of cluster representatives for
reducing visual clutter and assess the approaches in [33].

4 STREAMLINE GENERATION & SIMILARITY

In this section, we describe our generation of streamlines,
their properties, and our streamline similarity measures.

4.1 Domain, Tracing, and Line Properties
The input of the streamline generation is the volume mesh
from the CFD simulation (Sec. 2.3). It is represented as an
unstructured grid composed of tetrahedral cells. A vector is
stored at each cell point. Before streamlines are generated,
the mesh is manually cropped such that it contains only
the aneurysm and the near-vessel domain [20] (Fig. 1(b)).
This enables us to focus the analysis and strongly improves
the expressiveness of the clustering. It is very likely that
streamlines follow a similar course in the feeding vessel
(inflow) and they may also follow a similar course in a
draining vessel (outflow). However, depending on where
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they enter the aneurysm, their course may strongly differ
inside. If the far-vessel domain was also considered in
clustering, these differences would have less impact.

To assess the in- and outflow of the aneurysm, stream-
lines have been seeded on the ostium. The ostium is
represented by a triangle mesh whose vertices have been
homogeneously distributed such that the under- and over-
representation of flow parts are avoided [19]. The number of
vertices is adjusted such that the mesh resembles the former
vessel wall. Streamlines were traced in ParaView (Kitware,
Clifton Park, NY, U.S.). A 5th order Runge-Kutta method
has been employed with an integration step size that was
constantly adjusted according to an estimated error. The
tracing was carried out in backward and forward direction.
The resulting two lines were merged such that a linear
traversal of the vertices from in- to outflow is possible.

Line Properties: The streamlines differ in their num-
ber of vertices and in their length. The former has a strong
impact on the computational time of most inter-streamline
similarity measures. The similarity itself is strongly influ-
enced by streamline length. Two lines may follow a similar
course for a long time but then, one of them is terminated.
Most similarity measures assign a much higher weight to
the difference in length than to the similarity over a long
run. In all our datasets, a few lines follow a course very
similar to a large set of neighboring lines but are consid-
erably shorter. They occur close to the vessel wall due to
early termination of the integration. We consider them as
incomplete rather than incorrect data entities. Hence, the
clustering should group them with the streamlines having a
similar course. Still, we term them outliers in the following.

4.2 Geometry-Based Streamline Similarity
Geometry-based streamline similarity (or dissimilarity) is
often expressed by a distance measure. The choice of a
measure depends on the application. General requirements
are positive-definiteness and symmetry. A valid example
is the Hausdorff distance. However, this distance is very
sensitive to streamline length, since it outputs the maximum
of point-wise distances [11]. A less sensitive measure is the
Mean of Closest Point Distances (MCPD) [36]:

dM(si,s j) = mean(dm(si,s j),dm(s j,si)) (1)
with dm(si,s j) = meanpl∈si min

pk∈s j
‖pk− pl‖

Moberts et al. evaluate four similarity measures for clus-
tering fiber tracts and favor MCPD [34]. Yu et al. ap-
ply MCPD for clustering streamlines and report that the
clusters comprise important flow features [10]. In [11],
five similarity measures adopted from the clustering of
fiber tracts are evaluated for clustering streamlines. The
rather qualitative evaluation includes MCPD and shows no
drawbacks compared to the other measures. In [12], a new
similarity measure is compared to three other measures
including MCPD. The new measure performs one to two
orders of magnitude faster but no advantage in terms of
cluster quality is reported. However, MCPD is subjectively

rated as producing good quality clusterings. We adopted
MCPD and applied it to blood flow clustering. Initial tests
showed good results but also revealed that MCPD is still
too sensitive to streamline length, in particular when being
used with clustering techniques being sensitive to outliers
(Tab. 1). Very small-sized, outlier-corrupted clusters were
generated whose representatives distorted the flow sum-
mary. We further reduce MCPD’s sensitivity by replacing
the outer mean in Equation 1 by a minimum computation:

dM(si,s j) = min(dm(si,s j),dm(s j,si)) (2)
with dm(si,s j) = meanpl∈si min

pk∈s j
‖pk− pl‖

If two lines are very similar but one is shorter, dm from
the shorter to the longer line is chosen. The resulting high
similarity increases the chance of being assembled.

4.3 Attribute-Based Streamline Similarity
Besides streamline geometry, we employ streamline at-
tributes for clustering. They describe (1) the underlying
vector field, (2) line bending or (3) domain-specific aspects:

1 pressure, velocity magnitude, velocity gradient mag-
nitude, angular velocity, vorticity magnitude

2 curvature, torsion
3 distance to ostium, distance to aneurysm wall, local

residence time
In the following, we focus on the domain-specific attributes
(3) since their clustering revealed the most interesting
aspects. The distance to the ostium is computed in order to
separate flow structures that occur close to the aneurysm’s
neck from those that occur close to its dome (Fig. 1(b)).
The distance to the aneurysm wall is determined in order to
separate flow close to the wall from flow close to the center.
Both are inspired by discussions with a neuroradiologist
and by clinical research results such as a close correspon-
dence between near-wall flow and wall-shear stress. They
have been computed only at streamline vertices located
inside the aneurysm as the distance between the vertex and
its closest point (not vertex) on the respective surface.

The residence time of flow inside the aneurysm is crucial
in thrombosis formation [4]. We compute it by aggregating
partial timing results along each streamline. For each line
segment inside the aneurysm, the two associated velocity
magnitudes are retrieved from the data. Based on their
difference and the segment length, the partial residence
time is computed. If a line segment intersects the ostium,
the velocity is interpolated at the intersection point. While
the other streamline attributes are computed per vertex, the
residence time is a single scalar per line.

What is left is the definition of a streamline similarity
measure on the attributes. For the local residence time,
we employ the absolute difference of two scalars. For the
remaining attributes, we first compute a simple statistic that
approximates the attribute information along a streamline,
e.g., minimum, maximum, mean, or median. Since this
breaks down the information to a scalar value, we can apply
the same similarity measure as for the residence time.
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5 STREAMLINE CLUSTERING TECHNIQUES:
A QUANTITATIVE EVALUATION

This section is dedicated to the quantitative evaluation of
techniques often used for clustering streamlines (Sec. 3.2).
It starts with descriptions of Agglomerative Hierarchical
Clustering (AHC) and k-means based on [37] and an
introduction to Spectral Clustering (SC) based on [38].

5.1 Agglomerative Hierarchical Clustering
AHC starts with each streamline being a cluster and then,
repeatedly merges the two closest clusters until a single
cluster is formed. The resulting hierarchy is stored and may
be visualized by a dendrogram. All merge steps rely on
a squared, symmetric distance matrix M and a measure
of cluster proximity. In our case, M contains the pairwise
inter-streamline distances (Eq. 2). Various cluster proximity
measures have been published among which single link,
complete link, average link, and Ward’s method are most
popular. In single link, the proximity of two clusters is
defined as the minimum distance between any two points
in the different clusters. This approach can handle clusters
of arbitrary shape, it tolerates considerable differences in
cluster size but it is sensitive to outliers. Furthermore,
it is infamous for the chaining effect leading to clusters
containing very dissimilar elements which are connected
by a chain of similar elements via some transitive rela-
tionship. In complete link, the proximity of two clusters is
computed as the maximum distance between any two points
in the different clusters. Complete link is less susceptible
to outliers but tends to break large clusters and it favors
globular cluster shapes. Average link is an intermediate
approach between single and complete link. It also strives
for globular compact clusters [39]. The proximity of two
clusters is defined as the average proximity between pairs
of points in the different clusters. Ward’s method aims at
minimizing the total within-cluster variance. It defines the
proximity of two clusters as the sum of squared distances
between any two points in the different clusters (SSE: sum
of the squared error). Due to the SSE-based proximity,
Ward’s method favors globular clusters. It was shown to
prefer clusters with similar size and to be robust against
outliers in the context of 2D curves [40].

All AHC variants lack a global objective function to be
optimized (Tab. 1). They decide locally which clusters are
merged. These decisions cannot be undone such that bad
decisions, e.g., involving outliers, are propagated through-
out the entire clustering process. A strength of AHC is its
ability to rapidly generate different numbers of clusters k
by cutting the cluster hierarchy at respective levels. Further-
more, it is non-parametric except for k and the proximity
measure. Both strengths explain its frequent use when the
“correct” number of clusters is unknown. The user then
sequentially browses through the levels. Visually comparing
consecutive clustering results is simplified by the locally
restricted change (split/merge). AHC’s bottleneck in terms
of time complexity is the computation of M, which often
requires a vast number of Euclidean distance tests.

TABLE 1
Comparison of clustering algorithms with respect to

the type of objective function (OF) and the capabilities
to handle arbitrarily-shaped clusters, clusters of

significantly different size, and outliers.
Property Spectr. Agglomerative Hierarchical Clustering k-means

Clust. Single Compl. Avg. Ward

OF global local local local local global
Shape + + − − − −
Size o + − o o −

Outlier + − o o + −

5.2 k-means Clustering

k-means requires an a priori definition of the number of
clusters k by the user. Then, k initial cluster centroids are
chosen, often by a random selection of k data entities.
Each entity is now assigned to the closest centroid, e.g,
by comparing squared Euclidean distances. Finally, each
centroid is updated to the mean of its assigned data enti-
ties (which rarely corresponds to an existing entity). The
assignments and updates are repeated until the goal of a
global objective function has been achieved. For squared
Euclidean distances, the objective function usually aims at
minimizing the sum of the squared distances of data entities
to their cluster centroid (SSE).

Streamlines cannot be directly plugged into k-means
since the computation of their mean is undefined. Feature
vectors must be derived representing the lines in a new
n-dimensional space. A straightforward approach is to use
the 3D coordinates of their vertices. Since the number of
vertices varies (Sec. 4.1), each line must be equidistantly
resampled to a uniform number. We employ the average
number of vertices of all streamlines. A lower-dimensional
alternative has been proposed by Chen et al. [9]. Two scalar
streamline entropy measures together with the coordinates
of start-, middle, and endpoint of the line constitute an 11-
dimensional feature vector. Contrary to [9], we employ all
dimensions in a single clustering stage since the proposed
two stages hamper a user-defined choice of k. However, the
latter is required for our quantitative evaluation.

k-means is often computationally faster than AHC since
it does not require the computation of pairwise distances
between data entities. However, it is sensitive to outliers
and fails in handling non-globular clusters and clusters of
widely different sizes (Tab. 1). Its results are dependent on
the random initialization of the centroids. A “bad” choice
causes the algorithm to get stuck in a local minimum of the
objective function. We mitigate this problem by running
the algorithm ten times and choosing the result with the
minimum SSE.

5.3 Spectral Clustering

Spectral Clustering (SC) maps the original streamlines to
a spectral embedding space where each line is represented
by a point (Fig. 2). Key features of the mapping are the
preservation of local distance relations between nearby lines
and the enhancement of the data’s cluster properties, i.e. an
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(a) (b)
Fig. 2. (a) Spectral Clustering of streamlines in a
basilar tip aneurysm. (b) Spectral embedding of the
lines. The first three largest eigenvectors are shown.

improved cluster separability. In the following, we use the
terms distance and difference interchangeably.

SC can be formulated as a graph partitioning problem
[41]. Streamlines are represented by a weighted, fully-
connected, undirected graph. The nodes are the streamlines
and the edge weights are computed according to Equation 2.
The weights are then transformed from difference to affinity
such that similar streamlines have a high and dissimilar a
low pairwise affinity. Next, the graph is partitioned into
subgraphs. Shi and Malik [41] propose to use a normalized
cut which minimizes the sum of weights of the edges that
need to be removed (cut) and at the same time balances the
sum of edge weights of the partitions. While this problem
is NP hard, a relaxed version is solved by spectral graph
partitioning using Graph Laplacians.

Given a dataset S with n streamlines as a graph and a
number of clusters k, (1) the n× n distance matrix M is
computed by a pairwise application of Equation 2 to the
lines in S. The same matrix is employed for AHC (Sec. 5.1).
(2) Based on M, the n× n weighted adjacency matrix
of the graph is constructed by applying a function f to
the entries of M that gives high values in case of small
differences and converges to zero for high differences. The
resulting matrix W is referred to as affinity matrix. As f ,
the Gaussian similarity function is used:

f (mi j) = f (m ji) = exp(−(mi j)
2/(2σ

2)) (3)

The parameter σ controls the width of f thereby steering
how rapidly the affinity falls off. (3) Next, a n× n diagonal
degree matrix D is constructed with each diagonal entry dii
being the degree of the node that represents streamline i in
the graph. The degree is computed as the sum of weights
of the edges incident to the node. (4) Now, the normalized
Graph Laplacian L is computed [41]: L = I−D−1W with
I being the identity matrix. (5) Then, the eigenvectors
and eigenvalues of L are determined. The eigenvectors
corresponding to the smallest k eigenvalues are used for
clustering. (6) Let U be the n× k matrix that contains
the k eigenvectors as columns. Each row i of U then
represents the coordinates of a point that corresponds to
streamline i in the Rk spectral embedding space spanned
by the eigenvectors. (7) In the embedding, clusters can be

detected, e.g., by k-means or an eigenvector rotation [42].
We employ the latter since it suggests an optimum number
of clusters based on a user-defined range for k. Since it
is based on the largest eigenvectors of L, we change the
formulation of L to:

L = D−1W (4)

Local scaling: Zelnik-Manor and Perona propose a
local determination of σ since a global value (Eq. 3) only
works well if all clusters are of the same density [42]. Since
we cannot guarantee this for our streamlines, we adopt their
local scaling. A local σi is computed for each line i based
on the difference between i and its N’th neighbor. A value
of N = 7 is reported to give good results [42]. However,
our experiments indicated that N must be adjusted to each
dataset. In very dense sets of streamlines, SC partially
failed to separate clusters. With increasing density, the local
neighborhood of a line contains an increasing number of
very similar lines. However, the number of neighbors with
an affinity� 0 should not be “too small and not too large”
for SC to work properly [38]. Based on ten datasets, we
identified N = 5% of the streamline count as appropriate.

SC strives for a globally optimal partitioning while AHC
is bound to locally optimal decisions (Tab. 1). It can
handle arbitrary cluster shapes while most AHC variations
and k-means favor globular shapes. SC with local scaling
considers the local streamline density. This is useful, e.g.,
if streamlines are seeded with a higher density close to the
aneurysm wall. Our implementation of SC is parameter-free
except for the range of values for k. Since the eigenvector
rotation computes all partitionings within this range, the
user can browse also the suboptimal results. SC is biased
towards clusters of similar size due to the balancing of
edge weights in the graph cutting. On the other hand,
this property makes it robust against outliers which was
acknowledged in the context of fiber tract length [35]. As
for AHC, the bottleneck of SC is the computation of M.

5.4 Quantitative Evaluation
We quantitatively evaluated four variants of Agglomera-
tive Hierarchical Clustering (AHC), k-means, and Spectral
Clustering (SC) for clustering streamlines. The evalua-
tion was based on five clinical cases together compris-
ing ten datasets and representing the prevailing types of
aneurysms: basilar tip and side-wall aneurysms. Three cases
were simulated without virtual stenting (two are shown in
Fig. 2(a) and 4(a)). Two cases have been simulated before
and after stenting, one of them with two types of stents in
two different positions (Sec. 7.1 and 7.2). The streamline
count was between 1138 and 2929. The evaluation was
restricted to geometry-based clustering (Sec. 4.2). For each
combination of clustering algorithm (n = 6) and dataset
(n = 10), streamlines were clustered with the number of
clusters being in the range [2,20] (n = 19). This resulted in
6×10×19 = 1140 partitionings.

Different measures for assessing the quality of a clus-
tering result have been proposed. In the absence of a
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Fig. 3. Average internal cluster validity measures
based on ten datasets. Spectral Clustering (SC),
four variants of Agglomerative Hierarchical Clustering
(AHC), and k-means are compared.

ground truth, e.g., external labels provided by an expert,
unsupervised measures of cluster validity are appropriate
[37]. They are also called internal validity measures since
they are purely based on information present in the data.
We employ four internal measures which together cover the
most important aspects of cluster quality [39]:
• Silhouette Width: Non-linear combination measure of

cluster cohesion and separation. Values are in the range
[−1,+1] and should be maximized.

• Connectivity: Local measure reflecting to which degree
the L most similar neighbors of a streamline are placed
in the same cluster. Values are in the range [0,+∞] and
should be minimized. We define L = 20.

• Hubert’s Γ Statistic: Measure of correlation between
the distance matrix M and an idealized distance matrix
(distance is 0 for streamlines in the same cluster and
1, otherwise). Values of the normalized statistic are in
the range [−1,+1] and should be maximized.

• Stability: Measure reflecting the stability and hence,
the significance of the clusters. Random overlapping
subsamples of the data are repeatedly drawn and
clustered using the same algorithm. We draw 20
subsamples. Their clusters are then compared to the
partitioning of the original data via the Adjusted Rand
Index whose values are in the range [−1,+1] and
should be maximized [43].

To ensure comparability of the algorithms, all measures
were computed in 3D streamline space although k-means
and SC cluster in different spaces, i.e. in feature vec-
tor space and in the spectral embedding. The first three
measures employ the similarity of two streamlines which
is inferred from the distance matrix M. Clustering by k-
means has been based on two types of feature vectors
(Sec. 5.2). The type based on streamline resampling consis-
tently achieved better internal measures, which is likely due
to the very sparse representation of the streamline course by
the other type (only three vertices). Hence, we restrict the
presentation of evaluation results to the former. For each
algorithm, the internal validity measures were averaged
over the 19 partitionings and the 10 datasets (Fig. 3).

Silhouette Width: AHC with single link exhibits a
very poor silhouette width (−0.47). This is due to the chain-

ing effect, which leads to a single huge heterogeneous clus-
ter containing almost every streamline (Sec. 5.1). Hence,
cluster cohesion as well as separation are small. Chaining
has been observed for all datasets and most numbers of
clusters. K-means performs better but sill exhibits a rather
low value (0.18). The reason is that simply resampling
all streamlines to a uniform number of vertices amplifies
differences in streamline length and position offset for oth-
erwise very similar lines. This counteracts our streamline
similarity measure, which has been tailored to tolerate these
differences (Eq. 2). As a consequence, similar lines are
assigned to different clusters. Complete link also achieves
a low silhouette width of 0.28. This is likely due to its
tendency to break large clusters leading to a low inter-
cluster separation between the resulting parts. This effect
could be observed on a sample basis. Average link, Ward’s
method and SC perform equally well and exhibit the highest
silhouette widths: 0.42,0.43,0.38.

The silhouette width is biased towards globular clusters
[39]. In case of elongated or concave clusters, algorithms
correctly identifying them, e.g., single link and SC, may be
assigned a lower silhouette width than failing algorithms.
Since the cluster shape in streamline space is not clear,
the silhouette width must be employed carefully. For fiber
tracts, the non-globular nature of clusters has already been
acknowledged [44].

Connectivity: Single link clustering by far achieves
the best connectivity value due to its proximity measure
which strives for a merge with the nearest neighbor. This
bias has already been acknowledged in [39]. The second
and third best connectivity values are achieved by average
link and Ward’s method. Complete link exhibits the worst
value of all AHC variants. It more often adds similar
neighbors of a streamline to another cluster, which may
again be due to the breaking of large clusters. This leads to
streamlines at the joint cluster border, which have similar
neighbors in both clusters. The connectivity of SC is worse
than for all AHC variants. However, this is to a great
extent caused by the functioning of the algorithms and the
way of computing connectivity. The computation adds the
highest penalty value if the most similar neighbor is not
in the same cluster. This rarely occurs in AHC since each
variant starts by locally aggregating the nearest singleton
clusters. SC aims at a global optimization and occasionally
adds the most similar line to another cluster. A preliminary
investigation revealed this phenomenon at the joint border
of closely spaced clusters. Due to the bias of connectivity
towards the AHC approaches, its usefulness in assessing
SC is questionable. The connectivity of k-means is worst
for the same reason as for the silhouette width.

Hubert’s Γ Statistic: Hubert’s Γ Statistic shows a
poor result for single link due to the chaining effect (0.04).
In the one large cluster, very dissimilar streamlines are
grouped together leading to negative correlation values.
The performance of k-means is considerably better (0.39)
but still worse than for the remaining algorithms since
the above-mentioned assignment of similar streamlines
to different clusters leads to negative correlation values.
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Complete link, SC, and Ward’s method reach similar results
on average (0.44,0.45,0.48). The highest value is measured
for average link by a rather narrow margin (0.52).

Stability: Single link’s stability (0.97) is not expres-
sive since the entire set of streamlines is always grouped
in a single cluster. Complete linked achieves the lowest
stability (0.59) due to the maximum computation in the
proximity measure (Sec. 5.1). Since random subsamples are
drawn from the original data to measure stability, different
streamlines are missing each time. While the maximum
computation is considerably affected by missing lines, the
average and the variance computation in Average link and
Ward’s method, respectively are less sensitive (0.79,0.74).
SC and k-means achieve the highest meaningful stability
values (0.82,0.85). Both apply a global objective function
and are hence, less sensitive to local changes than AHC.
However, the stability of k-means is dependent on the
number of runs (= 10, Sec. 5.2) and decreases to 0.72
for a single run. Even with a high number of runs, k-
means may generate different results if started several times
due to the random initialization of cluster centroids. The
result of all AHC variants is dependent on the order of the
input streamlines. If the proximity measure happens to be
equal for two pairs of clusters, the first encountered pair is
merged. However, we did not observe this problem.

Summary: Single link is not suitable for clustering
blood flow due to the chaining effect which requires
dedicated post-processing [10]. Complete link generates
better clusters but tends to break large clusters. This has
a negative impact on inter-cluster separation, which is
reflected by lower silhouette widths. Further, the clustering
results of complete link show a rather low stability. Sta-
bility becomes an important issue if the seeding density is
varied, e.g., along the ostium, or in interactively sampling
a region-of-interest by overlapping seeding regions, e.g.,
the aneurysmal near-wall region. In both cases, pairs of
similar streamlines that survive the modifications should
consistently be assigned to a joint cluster. K-means per-
formed particularly poor with respect to the silhouette width
and connectivity. Also, the stability of its clusters is less
predictable due to the random initialization. Average link,
Ward’s method, and SC performed equally well except for
the connectivity which is however biased towards AHC.
An extended evaluation may investigate the overlap of their
clustering results to gain further insight into their principles
of operation and the data.

Average link’s sensitivity to outliers was significantly
reduced by our adapted streamline similarity measure
(Sec. 4.2). While the original measure (Eq. 1) lead to
small-sized, outlier-corrupted clusters (< 6 streamlines) in
each dataset, this effect was only observed in three datasets
with the new measure. Ward’s method and SC proved to
be rather insensitive to outliers. Overall, we recommend
Average link, Ward’s method, and SC for clustering blood
flow. Visual blood flow summaries based on each of them
are qualitatively evaluated by domain experts in Section 6.4.

6 VISUAL SUMMARY OF BLOOD FLOW

This section is dedicated to the computation of cluster
representatives, their aggregation in a visual flow summary,
the interaction with the summary, the expert evaluation of
the summary, and our development environment.

6.1 Cluster Representatives
Displaying thousands of streamlines leads to a cluttered
visualization hampering particularly the interpretation of
inner flow structures (Fig. 4(a)). Cluster representatives
summarize the flow and show these structures (Fig. 4(b)).
In the context of clustering fiber tracts, different types of
representatives have been discussed [33]. O’Donnel et al.
employ Spectral Clustering and determine an embedding-
based representative for each fiber bundle in spectral em-
bedding space (Fig. 2(b)). The centroid of the bundle’s point
cloud is computed and the fiber closest to it is chosen. This
is feasible due to the high density and number of embedded
fibers (up to 25,000 per brain). In our case, the streamline
count is often < 3000. Furthermore, given a non-globular
cluster, e.g., banana-shaped, the streamline closest to the
cluster centroid may provide a weak representative.

As an alternative computed in the original 3D space, we
chose the streamline with the smallest average distance to
all other lines of the cluster. While often well representing
the clusters, this distance-based representative is prone to
outlier streamlines due to the outer minimum in the distance
measure (Eq. 2). A short outlier, running very similar to all
streamlines in its cluster, is assigned a small distance to
all of them. Longer streamlines are more likely to deviate
from the other lines in their cluster. Hence, the outlier is a
more likely candidate for representative selection.

O’Donnell et al. propose another approach for computing
representatives in 3D space [33]. For each cluster of fibers,
a local Cartesian grid is aligned with the cluster’s axis-
aligned bounding box. For each voxel of the grid, the
number of fibers that pass through is recorded leading to
a density volume. For each fiber, the density is integrated
along the line and the result is weighted with the fiber’s
length. The fiber with the highest value is the density-based
representative. Several problems occur in transferring this
approach to streamlines. The lines in a cluster may follow
the same course over a long range but extend beyond either
end of this range (Fig. 4(c), bottom). No line may exist that
faithfully represents the entire cluster. The lines may also
differ significantly in length. Furthermore, a few very long
lines may exist in helical flow. Hence, we consider only
density and for now neglect the weighting with length. Note
that length is still inherently considered, since longer lines
may accumulate more densities. The primarily density-
based representatives well indicate the densest parts of the
clusters which often occur in regions of helical or turbulent
flow being of high interest. In an initial flow summary and
in the remainder of this paper, we employ density-based
representatives. However, the user may change the flow
summary by modifying weights [0,1], which we assigned
to density, length, and distance. For instance, setting the
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(a) (b) (c) (d)
Fig. 4. (a) Full set of streamlines in a side-wall aneurysm. (b) Streamlines in (a) clustered according to geometry.
One representative is displayed for each cluster (n = 9). A prominent swirl in the center of the aneurysm and
laminar helical and complex flow below the ostium (transparent surface) are revealed (top, left, and right arrow).
(c) Examples for good (red) and amendable (yellow) representatives. Dots indicate parts of the cluster which
are not represented. (d) Flow around a cavity clustered according to local residence time. A selected cluster
is visualized by semi-transparent streamlines. Its attribute-based representative indicates only the lower branch
(bottom). A representation of cluster shape is obtained by further clustering based on streamline geometry (top).

weight of density to zero and the weight of length to
one leads to length-based representatives, which may better
illustrate the entire extent of the cluster.

If streamlines were clustered according to a streamline
attribute, we employ attribute-based representatives. For
each cluster, the mean of the attribute or of the statistic
that has been employed is computed and the line with an
attribute value closest to the mean is chosen (Sec. 4.3).
The representative then indicates the clusters attribute range
instead of its shape. Since the course of streamlines inside
a cluster may be rather heterogeneous, we conduct a further
partitioning according to streamline geometry (Fig. 4(d)).

6.2 Number of Clusters
A crucial question in generating the blood flow summary
is how many representatives should be displayed, i.e. how
many clusters must be computed? For blood flow data, the
“correct” number of clusters is not known. Agglomerative
Hierarchical Clustering (AHC) is well suited here since the
cluster hierarchy may be cut at consecutive levels in order
to interactively browse through a range of cluster numbers
(Sec. 5.1). Spectral clustering (SC) and k-means require
rerunning the algorithm each time. Merging and splitting
clusters in AHC occurs locally in space and is hence easier
to track visually. However, our practical experience with
highly intertwined 3D streamline clusters shows that it
is still difficult to grasp the change between consecutive
cluster numbers without visual guidance.

We aim at minimizing the workload of physicians by
making a “good guess” with respect to the number of
clusters. A default number increases the reproducibility
of our approach, which is a key requirement for entering
clinical routine. Further, it facilitates a more standardized
comparison of the flow before and after stenting and it
supports a categorization of blood flow patterns. A good
guess leads to clusters representing all significantly distinct
flow structures – overrepresented structures are tolerable
while missing structures are not – and each cluster is

homogeneous such that the representative indeed repre-
sents all contained streamlines. Translated into clustering
language, the inter-cluster separation and the intra-cluster
cohesion should be high. We couple the quantitatively best
performing streamline clustering techniques, AHC with
average link, AHC with Ward’s method, and SC (Sec. 5.4),
with state-of-the-art techniques computing the number of
clusters k that best satisfies both requirements.

Salvador and Chan propose the L-method for computing
k in hierarchical clustering algorithms [45]. The method is
based on detecting the knee in a graph that opposes numbers
of clusters and a cluster evaluation metric. Since the loca-
tion of the knee depends on the shape of the graph which
again depends on the number of tested cluster numbers,
a full evaluation graph, ranging from two clusters to the
number of data elements, is recommended. We compute
the full graph based on the evaluation metric suggested in
[45]. Zelnik-Manor and Perona propose an algorithm for
computing k in SC [42]. The algorithm iterates over a user-
defined range [a,b] for k and determines the optimal value.
The optimization is based on finding the optimal rotation
between the set of the first ki, i ∈ [a,b] largest eigenvectors
of the Graph Laplacian (Eq. 4) and the canonical coordinate
system. We empirically determined the range [4,20] for
detecting all relevant flow structures in ten datasets.

6.3 Visualization and Interaction

In the initial blood flow summary, cluster representa-
tives corresponding to the optimal partitioning are shown
(Fig. 4(b)). The user may inspect the suboptimal partition-
ings by browsing AHC’s hierarchy or SC’s range [a,b].
A representative can be picked causing the corresponding
cluster to be displayed. For browsing all clusters, the
user may scroll the mouse wheel. If the clustering was
based on a streamline attribute, the set of geometry-based
representatives per cluster is displayed after picking and
during browsing (Sec. 6.1).
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The streamline visualization is embedded in a surface
rendering of the vessel wall. The wall is reconstructed
from the unstructured grid of the CFD simulation. It is
rendered opaque with culled front faces. The opaque back
faces prevent a look through the aneurysm on lines in the
near-vessel domain. The ostium and the stent surface are
integrated. The ostium is rendered highly transparent.

Streamlines are rendered with GPU support as sets of
quads and halos are added to improve spatial perception
[46] (Fig. 4(a)). The halo color is either set to black or
encodes the cluster ID. The latter is useful to distinguish
clusters when the line color is modified according to a
streamline attribute. However, our collaborators criticized
the interference of halo and line color hampering the
readability of the attribute. We initially color all halos in
black and optionally allow an encoding of the cluster ID.

For visualizing the representatives, we evaluated stream
ribbons and tubes. While ribbons additionally show rotation
about the flow axis, color-mapped values are easier to read
from tubes during a change of the viewing perspective.
Our collaborators rated the readability as more important
and hence, we employ tubes. In order to illustrate the flow
direction, arrowhead glyphs are attached to the end of each
tube pointing in outflow direction. The tube radius encodes
the cluster size, i.e., the number of grouped streamlines.
Halos are added to the representatives and initially colored
in black. While this solves the color interference problem,
it hampers visually tracking a tube through the set of highly
intertwined representatives. Hence, we offer an optional
color encoding of the cluster ID. Alternatively, only the
halo of the representative under the pointer is colored
according to cluster ID during mouse hover and the other
representatives are rendered semi-transparently.

An important aspect is the coloring of streamlines and
representatives. In geometry-based clustering, streamline
color is modified according to a user-defined attribute.
In attribute-based clustering, the statistic that has been
employed for clustering is displayed per line, e.g., the
maximum or mean of the attribute (Sec. 4.3). Two ap-
proaches are implemented for coloring the representatives:
(1) simply copying the attribute values of the corresponding
streamline, and (2) averaging the attribute values over all
lines in the cluster. If the clustering has been based on
streamline geometry, we apply (1) for attributes being
defined as a series of values along each streamline and
(2) for single scalar attributes. Note that (1) provides a
reasonable approximation of the entire cluster for most flow
attributes since their change in value is similar across all
streamlines in the cluster due to the common underlying
flow pattern. If the clustering has been based on an attribute,
we directly apply (2) for single scalar attributes and for a
series of values, we average over the statistic that has been
employed in computing streamline similarity (Sec. 4.3).

6.4 Qualitative Evaluation

We let domain experts evaluate blood flow summaries
generated by means of the quantitatively best performing

streamline clustering techniques (Sec. 5.4): Agglomerative
Hierarchical Clustering (AHC) with average link, AHC
with Ward’s method, and Spectral Clustering (SC). The
number of clusters in the summary and hence, the num-
ber of representatives, has been computed automatically
(Sec. 6.4). The evaluation is based on three clinical cases
together comprising five datasets and representing the pre-
vailing types of aneurysms. One case has been simulated
without virtual stenting (Fig. 4(a)). Two cases have been
simulated with and without stenting, one of them with two
types of stents in two different positions (Sec. 7.1 and 7.2).
For the latter case, we considered only the most beneficial
type of stent and position. The blood flow summaries were
evaluated by two board certified (BC) senior interventional
neuroradiologists, a BC senior radiologist with a strong
background in aortic aneurysms, two CFD engineers with a
strong background in cerebral blood flow (one being coau-
thor of the paper), and one computer scientist working on
experimental 7-Tesla Magnetic Resonance Imaging (MRI)
of cerebral blood flow. The CFD engineers and one of
the neuroradiologists participated in the Virtual Intracranial
Stenting challenges in 2009 and 2010 (Sec. 7.1 and 7.2).
The case without virtual stenting was stented by the neu-
roradiologist in real life.

Flow Summary: At first, the experts were asked to
familiarize with the original data, i.e., the streamlines. All
of them had seen streamline visualizations of blood flow
before. However, the two neuroradiologists had no and only
limited experience, respectively in interacting with such
visualizations, e.g., filtering lines and probing by interactive
seeding. The streamlines were visualized as in Figure 4(a).
The experts could filter lines by thresholding their average
distance to the vessel wall. This offered browsing through
the lines from the vessel wall to the center in order to
grasp the path of the flow through the near-vessel domain
(Fig. 1(b)) and to detect characteristic flow structures, such
as swirls. The experts were asked to sketch the flow path
and annotate all structures that they consider to be relevant
in a drawing of the aneurysmal silhouette.

Then, the flow summaries based on the three clustering
algorithms were presented in a random, blinded side-by-
side arrangement. In addition, a control summary was
generated and mixed in to eliminate coincidence. This
summary was generated based on a random number k
of clusters, with k being in the range of the numbers
computed for the three algorithms. Cluster size, the as-
signment of streamlines to clusters, and the selection of
cluster representatives were also randomized. The experts
were asked to rate each flow summary. Zero points were
given if the sketched flow was in no way represented by the
summary, one point was given if it was partially represented
and two points in case of full representation. Finally, the
experts should check whether the summary reveals other
important patterns than they had discovered. Additional
comments were recorded during the evaluation. The overall
time exposure for the experts was ≈ 60 minutes.

The results of the evaluation are summarized in Table 2.
SC consistently achieves the best results. Except for one
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TABLE 2
Average expert ratings of blood flow summaries

(∈ {0,1,2}, 2=best). Comparison of Spectral
Clustering (SC), Agglomerative Hierarchical

Clustering (AHC) with average link (avg) and Ward’s
method, and random generation (RAND).

Datasets
(NVS=Not Virtually Stented,V09/V10=Virtual

Intracranial Stenting Challenge 2009/10,
S=SILK, R=right posterior cerebral artery)

Algorithm NV S V 09 V 09S V 10 V 10SR �
SC 2.0 2.0 1.5 2.0 2.0 1.9
AHC avg 1.5 1.8 2.0 2.0 1.2 1.7
AHC ward 1.8 1.8 0.8 1.8 1.2 1.5
RAND 1.0 1.0 0.0 0.7 1.0 0.7

dataset, its flow summaries fully represent the flow sketched
by the experts. For this specific dataset, half of the partici-
pants considered a swirl as “not really visible” (one point)
while the other half considered it to be “slightly indicated”
(two points). AHC with average link and with Ward’s
method show the second and third best results, respectively.
However, Ward’s method never achieves the full score on
average for none of the datasets. The control summary
(RAND) performs significantly worse than the rest, which
confirms that the other summaries indeed provide non-
random, meaningful insight. In 33 flow summaries out of
90 (5 datasets times 6 participants times 3 algorithms,
excluding RAND), the experts detected more interesting
flow patterns than they had discovered during streamline
filtering further indicating the summary’s benefit. The 33
summaries were generated in equal shares by the algorithms
thus not indicating a unique feature.

Number of Clusters: The CFD engineers and the
computer scientist were given an extra task before the
assessment of the flow summaries. This time-consuming
task did not fit into the tight schedule of the physicians
since it extended the evaluation time to 90−120 minutes.
In a sequence, the flow summaries based on the range of
possible numbers of clusters [4,20] were presented and the
experts were asked to select the number ksel that fully rep-
resents their sketched flow, possibly shows more important
flow structures, and is still clearly readable. To reduce time
exposure, each expert assessed each dataset only based
on one alternately chosen algorithm A with the control
summary being left out (3 experts times 5 algorithms results
in 15 ratings). After ksel had been determined, the experts
were asked to rate the flow summaries as explained above.
Afterwards, the summary corresponding to A was pointed
out and the expert was asked to compare the associated
computed number of clusters kcmp to ksel .

For SC, ksel was preferred once over kcmp, namely for
the only dataset for which SC’s flow summary did not
achieve the full score on average (Table 2, V 09S). For both
AHC with average link and AHC with Ward’s method, ksel
was preferred three times over kcmp since important flow
structures were missing based on kcmp. The remaining 8
comparisons assessed kcmp as appropriate for generating
an uncluttered summary, which is complete with respect

to characteristic flow structures. In 5 (of 8) comparisons,
these structures were overrepresented (kcmp > ksel) but still
clearly visible. In the remaining 3 comparisons, ksel was
higher than kcmp because one specific swirl was seen based
on both but even more clearly based on ksel .

In conclusion, the blood flow summaries based on SC
have achieved the best evaluation results by a narrow
margin. The applied clustering algorithm, the number of
clusters, and the type of representative effect the success
of the summary. Hence, we recommend and employ in
the remainder SC, its associated technique for computing
a reliable number of clusters, and density-based represen-
tatives (Sec. 5.3, 6.1, 6.2). Since kcmp was assessed as
inappropriate in one case of SC, we offer interactively
browsing the range of possible cluster numbers [4,20]
starting from kcmp.

Anecdotal Feedback: All experts agreed that the flow
summary is much faster to interpret than the entire set
of streamlines and reveals flow features which are hidden
inside the streamline clutter. They appreciated the workload
reduction by avoiding the tedious iterative procedure of
selectively seeding and/or filtering streamlines. Displaying
streamline clusters on demand was rated as very valuable
to get an impression of the spatial region that is represented
by a cluster representative. Supporting the visual tracking
of individual representatives by coloring the halo of the
representative under the mouse pointer was preferred over
temporarily modifying the halo color of all representatives
according to cluster ID (Sec. 6.1). The physicians agreed
that the comparison of flow before and after stenting is
greatly simplified by the flow summaries in Figure 5 and 7.

6.5 Design Lessons

We carefully designed the flow summary in a tight feedback
loop with our collaborators. The design lessons learned help
other visualization practitioners working with similar data.

(1) Restrict the clustering domain to the region-of-
interest. We restrict it to the aneurysm and the near-
vessel domain. Otherwise, long sections of straight in- and
outflow would lead to high streamline similarities while
differences inside the aneurysm would have less impact
(Sec. 4.1). (2) Choose a similarity measure that is less
sensitive to streamline length if the course of streamlines
is the primary concern. (3) Provide a good initial guess of
the number of clusters since visually tracking the changes
while browsing through different numbers of clusters is a
tedious task especially for highly intertwined streamlines.
(4) Use tubes as cluster representatives instead of ribbons if
the readability of attribute values is crucial. (5) Add halos
to streamlines and representatives in order to enhance their
spatial perception. (6) Use black as halo color to avoid
visual interference with color-coded streamline attributes.
(7) Support visual tracking of tubes through a set of
intertwined representatives by assigning a striking color to
the halo of the representative under the mouse pointer. (8)
Allow the user to see the original clusters since the repre-
sentatives well encode the general course of the contained
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(a) (b) (c) (d)
Fig. 5. VISC 2009. (a) Virtual stent placement, morphological features, subdivision of vascular domain (red
circles) and flow conditions. (b,c) Streamlines clustered based on geometry (b) before and (c) after stenting.
Arrows point at interesting differences, e.g., reflux (upper arrow). Flow from the right artery is not completely
diverted (c). (d) Inside the artery. Flow bypassing the stent (arrow) reveals a gap between stent and vessel wall.

streamlines but fail in illustrating the cluster extent. (9)
Encode the direction of the flow, e.g., by arrowhead glyphs.
(10) Attribute-based clustering may require the computation
of several representatives per cluster since the streamlines
in a cluster may be quite heterogeneous with respect to
their geometry (Fig. 8 (b,d)).

6.6 Development Environment
The clustering algorithms, the similarity measures and the
computation of cluster representatives are implemented in
MATLAB (MathWorks, Natick, MA, U.S.). Source code
for local scaling and determining the number of clusters is
provided by Zelnik-Manor and Perona [47]. All MATLAB
code is exported as a shared library and accessed from cus-
tom C++ code. The three categories of streamline attributes
are computed using (1) ANSYS Fluent 12 and ParaView,
(2) the Vascular Modeling Toolkit (www.vmtk.org), and (3)
custom C++ code (Sec. 4.3). The visualization is imple-
mented in C++ and the Visualization Toolkit (Kitware, Inc.,
Clifton Park, NY, U.S.).

7 APPLICATION
We applied our approach to data of the Virtual Intracranial
Stenting Challenges (VISC) in 2009 and 2010 [48]. Please
consider the following advices when reading the figures of
this section. The color scales refer to the representatives, not
their halos. The annotated range of values is based on the
entire set of streamlines. Halo colors must not be employed
for establishing correspondence between clusters in differ-
ent figures or figure parts. They are assigned independently
to each clustering result and simplify the visual tracking of
representatives in a non-interactive display.

7.1 Virtual Intracranial Stenting Challenge 2009
For the VISC 2009, teams were invited to compete in
predicting stenting success based on simulated hemody-
namic data. Two cases and a model description of the flow
diverting SILK stent (Balt, Montmorency, France) were
provided. Due to space restrictions, we only discuss the
first case with a saccular side-wall aneurysm located at

a bifurcation (Fig. 5(a)). A rare anatomical variant is the
cavity (fenestration) behind the aneurysm. Our medical col-
laborators suggested placing the stent in the right artery and
circumventing the aneurysm to the left. The stent geometry
was modeled in a CAD program and manually fitted to
the vessel wall. The hemodynamic data generation resulted
in volume meshes with 4.3 and 4.6 (with stent) million
tetrahedral elements (Sec. 2.3). The meshes constituted the
input for streamline generation (Sec. 4.1).

The resulting lines have been clustered based on ge-
ometry (Sec. 4.2). The flow summaries are displayed in
Figure 5 (b,c). A higher number of clusters can be observed
in the untreated aneurysm indicating a more complex flow
pattern (Fig. 5(b)). After stenting, the flow is less complex
which decreases the risk of aneurysm rupture [5]. In the
stented configuration, flow arriving from the right artery
is not completely diverted but still enters the aneurysm
(Fig. 5(c)). A closer look from inside the vessel at the
location where this flow enters the stent reveals that the
stent model does not perfectly adhere to the vessel wall
(Fig. 5(d)). A considerable gap exists through which flow
with high pressure is bypassing the stent. A neuroradiolo-
gist commented that such gaps indeed occur in real stenting
due to a sharp bending of the vessel. Their prediction would
be of great value. The flow that travels through the virtual
stent, exits the stent at its aneurysm-near inflection point

(a) (b)

Fig. 6. Clustering streamlines according to their mean
distance to the aneurysm wall before (a) and after
virtual stenting (b). Stenting reduces near-wall flow.

www.vmtk.org
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(a) (b) (c) (d)
Fig. 7. VISC 2010. (a) Virtual stent placement, morphological features, subdivision of the vascular domain (red
circles) and flow conditions. (b-d) Clustering of streamlines based on geometry before (b) and after stenting (c,d).
Representatives indicating a major difference between the flow patterns are rendered opaque. While a “simple”
swirl is characteristic for the first two patterns (b,c), a double helical swirl is observed in the third one (d).

and enters the aneurysm (Fig. 5(c)). This may be mitigated
by a higher general or local mesh density. Before stenting,
reflux is observed below the ostium (Fig. 5(b), top arrow).
Furthermore, flow is entering the aneurysm from the left
artery with high pressure (Fig. 5(b), bottom arrow). After
stenting, this flow is obstructed by the stent and circumvents
the aneurysm. This is a convenient side effect of diverting
the flow arriving from the right branch.

A comparison of the aneurysmal wall-shear stress (WSS)
before and after stenting revealed lower values in the latter
which indicates a benefit. We investigate the near-wall flow
by clustering the streamlines based on their mean distance
to the aneurysm wall (Sec. 4.3). The results before and
after stenting are compared in Figure 6. To support a visual
comparison, the color mapping and the radius scaling of the
representatives after stenting are applied uniformly to both
configurations. The comparison shows that more flow hits
the wall and is traveling through the near-wall region before
stenting. This is in accordance with the higher WSS [49].
After stenting, a considerable amount of the flow barely
enters the aneurysm (thick blue tube in Fig. 6(b)). Note
that attribute-based representatives have been applied well
indicating a cluster’s range of attribute values (Sec. 6.1).

7.2 Virtual Intracranial Stenting Challenge 2010
For the VISC in 2010, research teams were invited to find
the optimal placement of a stent in treating a basilar tip
aneurysm (Fig. 7 (a)). We considered two types of stents
and two different positions, both covering the end of the
basilar artery and then extending to the beginning of the
left and the right posterior cerebral artery (LPCA/RPCA),
respectively. We restrict our discussion to the most bene-
ficial type of stent (SILK). The hemodynamic data of the
two stented configurations and the untreated case has been
generated as described in Section 2.3. The biggest tetra-
hedral mesh consists of 13.5 million elements (including
stent). The stent geometry was modeled in a CAD program.
Learning from the issues of a manual stent deployment
(Sec. 7.1), we applied an automatic wall-tight deployment
using polyharmonic splines for free-form deformation [15].

For the detection of flow structures in the untreated
aneurysm and in the two stented configurations, the near-
vessel domain is specified (Fig. 7 (a)) and the data is
cropped. Then, streamlines are seeded at the ostium and
clustered based on geometry. Cluster representatives are
displayed and colored according to local residence time
(RT, Sec. 4.3). The color scale has been set for all con-
figurations to mapping the range of RT in the untreated
configuration (Fig. 7 (b-d)). Thus, regions of prolonged RT
after stenting can be easily spotted. Before we focus on RT,
we study the detected flow structures.

In Figure 7 (b-d), representatives indicating a major
difference between the flow patterns are rendered opaque.
Before and after stenting along the LPCA, parts of the
flow enter the aneurysm and after a swirling motion inside,
exit via the RPCA (Fig. 7 (b,c)). Stenting along the RPCA
considerably alters the flow pattern and generates a double
helical swirl in the center of the aneurysm. A closer look
at the highlighted representative(s) of each configuration
revealed that they always represent those clusters with the
highest RT values on average. Comparing their coloring
indicates that SILK stenting along the RPCA causes the
most prolonged RT and hence represents the preferred
strategy (Fig. 7(d)). Further evidence is given by plotting
the percentage of streamlines over discrete RT values
(Fig. 8 (a)) and by Janiga et al. [15] who report the most
prolonged turnover time for this configuration. The turnover
time is a global scalar measure which is proportional to RT
and both characterize intra-aneurysmal flow stasis [50]. In
the following, we focus on stenting along the RPCA.

In order to investigate RT more locally, the streamlines
of the stented configuration have been clustered based on
it. The cluster with the highest RT values is shown in Fig-
ure 8 (b). Its streamlines are rendered semi-transparent such
that the inner swirl is easier to perceive. Flow enters the
aneurysm, is attracted by opposing wall parts, converges in
a swirl in the center, and leaves the aneurysm (the swirling
motion is also indicated in Fig. 7(d)). Since correspon-
dences between a low WSS and thrombosis development
as well as between a high RT and thrombosis development
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Fig. 8. VISC 2010. (a) Comparison of local residence
times (RT) before and after stenting along the left and
right posterior cerebral artery (LPCA, RPCA). The % of
streamlines is plotted over discrete RT values. Stenting
causes prolonged RT. (b) Cluster with the highest aver-
age RT in RPCA stenting. (c) Investigating this cluster
in the context of wall-shear stress (iso-contours). (d)
Partitioning the cluster based on streamline geometry.
Flow is strongly decelerated at the stent wires (inset).

are known [4], the cluster has been further investigated in
the context of WSS (Fig. 8 (c)). WSS is mapped to the
surface of the aneurysm and visualized by contour lines. In
agreement with [4], a value of 1.5 is chosen as the upper
limit for color mapping. Values above are clamped to this
limit. As can be observed, low WSS values occur in a large
region where the flow streaks the wall (arrow). The same
is true for the opposite side of the wall. It should be further
investigated whether these regions are potential candidates
for thrombosis initiation and whether a double helical swirl
particularly encourages flow stasis.

It was shown in [15] that the SILK stent diverts a
considerable amount of blood. However, parts of the blood
flow exit the wired mesh and enter the aneurysm. In
Figure 8 (d), the cluster with the highest values of RT
is refined by a clustering based on geometry and the new
representatives are colored according to velocity magnitude.
The structure of the swirl is easier to perceive as compared
to Figure 8 (b). Furthermore, it can be observed that the
flow exiting the stent is strongly decelerated at its wires
thus leading to a prolonged RT and a slow inflow (strong
red to green jump in the inset of Fig. 8 (d)).

7.3 Performance
This section reports on the performance of our approach.
The focus is on computation time since memory consump-
tion is not critical. The time is dependent on the number of
streamlines and their number of vertices (columns 2-3 in

TABLE 3
Dataset characteristics and timings [s] of

geometry-based clustering and visualization.
V09/V10=Virtual Intracranial Stenting Challenge
2009/2010, S=SILK stent, N=Neuroform stent,

L/R=left/right posterior cerebral artery.
.

Dataset #Stream-
lines

#Vertices
(�)

Distance
Matrix

Clustering Visualiza-
tion

V 09 2254 505 4547 34.7 9.5
V 09S 2207 249 732 29.9 4.4
V 10 2929 265 1567 57.2 6.2
V 10NR 2923 275 1581 55.9 6.8
V 10NL 1153 283 256 12.8 4.1
V 10SR 2891 234 1128 51.8 7.4
V 10SL 1138 212 142 14.1 3.7

Table 3). While the first varies with the sampling density of
the ostium, the latter depends on the streamline length and
integration step size (Sec. 4.1). We measured the compu-
tation time of Spectral Clustering and of the visualization.
In clustering, we differentiated between the computation
of the distance matrix and the actual clustering. The latter
also comprises the determination of cluster representatives.
In distance matrix computation, we focused on geometry-
based distances since attribute-based distances are much
faster to compute. The timings were taken on a 3.07GHz
Intel 8-core PC with 8GB RAM and a 64bit Windows
operating system (Table 3).

As expected, the computation of the distance matrix
represents the bottleneck. However, the matrix can be
reused for different clustering settings. In attribute-based
clustering, the time for computing the matrix depends on
the applied statistic (Sec. 4.3). For simple statistics such
as min/max, the computation is two orders of magnitude
faster than in geometry-based clustering. The timings for
the clustering itself are in the range of seconds. The most
time-consuming part of the visualization is the geometry
computation for the GPU-based streamline rendering.

8 SUMMARY AND DISCUSSION

We presented an approach for reducing visual clutter in
streamline visualizations of simulated blood flow. The
approach is based on clustering streamlines and computing
cluster representatives, which are compiled into a flow
summary. To determine the most appropriate clustering
algorithm, we carried out a quantitative evaluation of
Spectral Clustering (SC), four variants of Agglomerative
Hierarchical Clustering (AHC), and k-means. Based on
cluster validity measures, we identified SC and AHC with
average link and Ward’s method, respectively as superior. In
an expert evaluation of blood flow summaries generated by
these algorithms, SC achieved the best ratings by a narrow
margin. Its summaries are complete with respect to the
relevant flow structures in most cases. In a tight feedback
loop with our collaborators, we carefully designed the flow
summary. The design lessons learned help scientists, e.g.,
in exploring flow in other vascular pathologies.
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The computation of the summary is fully automatic.
Only a range for the number of clusters that possibly
exist in the dataset must be provided. The optimal number
is identified automatically. We empirically determined a
range of [4,20] for detecting all relevant flow structures
in ten datasets. The time needed for the clustering and
the visualization is within the range of minutes. Compared
to the Computational Fluid Dynamics (CFD) simulation,
which takes hours, it is of little consequence with respect
to a possible therapeutic workflow.

Results from CFD simulations are not yet part of the
clinical decision pipeline although they can be generated
within a clinically acceptable time frame for planning an
intervention. Neuroradiologists have little experience in
investigating flow data. Our flow summary simplifies the
access to the data, it is easier to read than full streamline
visualizations, and it contributes to the communication
between CFD engineers and physicians. The latter is of
crucial importance in understanding “How stent properties
affect flow patterns?”, “How the change in flow patterns
after stenting is related to treatment success?”, and “How
flow patterns are related to the risk of aneurysm rupture and
the development of thrombosis?”. Once these questions can
be answered, stenting may not be planned solely based on
the coverage of the aneurysm neck by the stent, but also
based on CFD results and the flow summary. The concept
of the summary can be readily transferred to (virtual)
coiling. However, the joint visualization of coils and cluster
representatives will cause serious occlusion problems.

The success of virtual stenting is so far evaluated based
on global measures, e.g., the turnover time. However, if
a certain stented configuration does not indicate a benefit
for the patient, global measures fail to explain why. We
cluster streamlines also based on locally derived domain-
specific attributes, e.g., the distance to the aneurysm wall
and the local residence time (RT). The latter was considered
a useful extension to the turnover time. Clusters with a high
RT may forecast locations of thrombosis initiation.

A limitation of our approach is that a few cluster repre-
sentatives do not capture the entire structure of their cluster.
They faithfully represent its densest part but fail to represent
all parts in the in- and outflow regions of the near-vessel
domain. Hence, the clusters itself should also be inspected.
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