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Abstract
Images in scientific visualization are the end product of data processing. Starting
from higher-dimensional data sets such as scalar, vector, and tensor fields given
on 2D, 3D, and 4D domains, the objective is to reduce this complexity to
two-dimensional images comprehensible to the human visual system. Various
mathematical fields such as in particular differential geometry, topology (theory
of discretized manifolds), differential topology, linear algebra, Geometric Alge-
bra, vector field and tensor analysis, and partial differential equations contribute
to the data filtering and transformation algorithms used in scientific visualization.
The application of differential methods is core to all these fields. The following
chapter will provide examples from current research on the application of these
mathematical domains to scientific visualization. Ultimately the use of these
methods allows for a systematic approach for image generation resulting from
the analysis of multidimensional datasets.

1 Introduction

Scientists need an alternative to numbers. The use of images is a technical reality nowadays
and tomorrow it will be an essential requisite for knowledge. The ability of scientists to
visualize calculations and complex simulations is absolutely essential to ensure the integrity
of analyses, to promote scrutiny in depth and to communicate the result of such scrutiny to
others. . . The purpose of scientific calculation is looking, not enumerating. It is estimated
that 50 % of the brain’s neurons are associated with vision. Visualization in a scientific
calculation is aimed at putting this neurological machinery to work [56].

Since this visionary quote from an article in 1987, scientific visualization, benefiting
from the affordable graphics hardware driven by the computer gaming industry, has
grown rapidly. Beyond academic research interests it has become also a consumer
market with practical applicability in industry and medicine. Still there are yet many
gaps that are left open due to the unequal evolution velocities in different fields.
Once, there is the human mind that is not able to keep up with the deluge of visual
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information which can be produced with modern technology. Many scientists still
prefer looking at numbers instead of utilizing modern display technology. At the
same time, data can be produced by modern supercomputers that is far beyond the
ability of even high-end graphics engines to be processed. Data sets originating
from numerical simulations of physical processes will usually be three-dimensional
or four-dimensional, with images just the final result of the process of scientific
visualization. In this context images are the means to analyze data set of higher
dimensions.

Reducing numerical data sets to images is known as the concept of the visual-
ization pipeline. In its simplest form it consists of a data source (n-dimensional),
a data filter (an algorithmic operation), and a data sink (an image). Data filters
need to understand the structure and meaning of the multidimensional input data
and to operate efficiently on them. This involves various mathematical fields such
as in particular differential geometry, topology (theory of discretized manifolds),
differential topology, linear algebra, Geometric Algebra, vector field and tensor
analysis, and partial differential equations. Within a scientific visualization process,
all these mathematical fields will work together, with more or less weighting.
We subsume this set of mathematical domains as “differential methods” in this
chapter as the concept of differentiation is fundamental to their approach of data
analysis. The following sections will demonstrate the application of the respective
mathematical fields to visual analysis by virtue of examples of ongoing research.

In Sect. 2 we discuss the general issue of how to lay out data to model the
structure of space and time, as we know it from mathematics as foundation for
further operations. Frequently visualization algorithms are implemented ad hoc,
given the problem, inventing the solution with highest performance. This allegedly
reasonable approach comes with an unfortunate downside: incompatibility among
independently developed solutions, which impacts data exchange and interfacing
complementary implementations. However, when keeping a common data model in
mind right from the earliest steps of conceiving some algorithm, interoperability can
be achieved at no cost with same performance as solitary solutions.

Given a solid foundation for data structures, Sect. 3 demonstrates how to
formulate differential operators using the concepts of chains, cochains, homology,
and cohomology. Since in computer graphics and visualization we have to deal with
discretized spaces, we arrive in the mathematical field of topology, as an essential
descriptive tool for meshes and all nontrivial grid structures.

When considering mathematics as a language unifying computer science, we
need to even more think about a common denominator within mathematics itself.
Geometric Algebra is a relatively new – or, rather, rediscovered – branch of
mathematics that is very promising. It is extraordinarily visually intuitive while
covering the abstractions of Clifford algebra as used in quantum mechanics equally
well as the formulations of curved space in general relativity. However, even
independent of such physics-oriented applications, Geometric Algebra has found its
merits within computer graphics itself. Section 4 will talk about the elegant usage
of five-dimensional projective conformal Geometric Algebra to handle primitives in
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computer graphics and eventually implement the ray-tracing algorithm with a few,
well-defined algebraic operations.

The general goal of visualization is to give insight into large and complex data
sets. Due to the sheer size of the data sets alone, it is favorable if not necessary
to automate at least parts of the analysis. A way to achieve this is by extracting
features. Features can either be certain quantities derived from a data set or a
mathematically well-defined, geometric object (point, line, surface, . . . ) with its
definition and interpretation depending on the underlying application, but usually
it represents important structures (e.g., vortex, stagnation point) or changes to such
structures (events, bifurcations). A feature-based visualization aims at the reduction
of information to guide a user to the most interesting parts of a data set. In Sect. 5 we
describe some important approaches to feature-based visualization of vector fields.
These include investigation of derived quantities such as vortices (section “Derived
Measures of Vector Fields”) and the topology of vector fields (section “Topology of
Vector Fields”). These approaches have become a standard tool for the analysis of
vector fields.

Finally, in Sect. 6 we explore the capabilities of partial differential equations for
the filtering and regularization of image data sets. Applications are enhancing image
quality by reducing noise or similar artifacts, as well as the visualization of vector
and tensor fields.

2 Modeling Data via Fiber Bundles

Purely numerical algorithms in CCC can be abstracted from concrete data struc-
tures using programming techniques such as generic programming [79]. However,
generic algorithms still need to make certain assumptions about the data they
operate on. The question remains what these concepts are that describe “data”: what
properties should be expected by some algorithm from any kind of data provided for
scientific visualization? Moreover, consistency among concepts shared by indepen-
dent algorithms is also required to achieve interoperability among algorithms and
eventually (independently developed) applications. While any particular problem
can be addressed by some particular solution, a common concept allows to build a
framework instead of just a collection of tools. Tools are what an end user needs
to solve a particular problem with a known solution. However, when a problem is
not yet clearly defined and a solution unknown, then a framework is required that
allows exploration of various approaches and eventually adaption toward a specific
direction that does not exist a priori.

The concept of how to lay out data to perform visualization operations in a
common framework constitutes a data model for visualization. Many visualization
applications are to a greater or lesser extent a collection of tools, even when bundled
together within the same software library or binary. Consequently, interoperability
between different applications and their corresponding file formats is hard or
impossible. Only very few implementations adhere to the vision of a common data
model across the various data types for visualization. The idea of a common data
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model is frequently undervalued or even disregarded as being impossible. However,
as D. Butler said, “The proper abstractions for scientific data are known. We just
have to use them” [16].

D. Butler was following the mathematical concepts of fiber bundles [16], or
more specific, vector bundles [15], to model data. The IBM Data Explorer, one
of the earliest visualization applications, now open source and known as “OpenDX
(http://www.opendx.org),” implemented this concept successfully [76]. These ideas
have been revived and expanded by [7] leading to a hierarchical data structure
consisting of a noncyclic graph in seven levels. It can be seen as largely keyword-
free, hierarchical version of the OpenDX model, seeking to cast the information
and relationships provided in original model into a grouping structure. This data
model will be reviewed in the following, together with its mathematical background.
Section “Differential Geometry: Manifolds, Tangential Spaces, and Vector Spaces”
will review the basic mathematical structures that are used to describe space and
time. Section “Topology: Discretized Manifolds” will introduce the mathematical
formulation of discretized space. Based on this background, section “Ontological
Scheme and Seven-Level Hierarchy” will present a scheme that is able to cover the
described mathematical structures.

Differential Geometry: Manifolds, Tangential Spaces, and Vector
Spaces

Space and time in physics is modeled via the concept of a differentiable manifold.
As scientific visualization deals with data given in space and time, following these
concepts is reasonable. In short, a manifold is a topological space that is locally
homeomorphic to R

n. However, not all data occurring in scientific visualization
are manifolds. The more general case of topological spaces will be discussed in
sections “Topology: Discretized Manifolds” and “Topology.”

A vector space over a field F (such as R) is a set V together with two binary
operations vector addition C: V �V ! V and scalar multiplication ı W F�V ! V .
The mathematical concept of a vector is defined as an element v 2 V . A vector
space is closed under the operations C and ı, i.e., for all elements u; v 2 V and all
elements � 2 F there is u C v 2 V and �ı u 2 V (vector space axioms). The vector
space axioms allow computing the differences of vectors and therefore defining the
derivative of a vector-valued function v.s/ W R ! V as

d

ds
v.s/ WD limds!0

v.s C ds/ � v.s/

ds
(1)

A manifold in general is not a vector space. However, a differentiable manifold M
allows to define a tangential space TP .M/ at each point P which has vector space
properties.

http://www.opendx.org
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Tangential Vectors
In differential geometry, a tangential vector on a manifoldM is the operator d

ds
that

computes the derivative along a curve q.s/ W R ! M for an arbitrary scalar-valued
function f W M ! R:

d

ds
f
ˇ
ˇ
ˇ
q.s/

WD df .q.s//

ds
(2)

Tangential vectors fulfill the vector space axioms and can therefore be expressed as
linear combinations of derivatives along the n coordinate functions x� W M ! R

with � D 0: : :n � 1, which define a basis of the tangential space Tq.s/.M/ on the
n-dimensional manifoldM at each point q.s/ 2 M :

d

ds
f D

Xn�1

�D1

dx�.q.s//

ds

@

@x�
f DW

Xn�1

�D1
Pq�@�f (3)

where {q}� are the components of the tangential vector d
ds

in the chart {x�} and
{@�} are the basis vectors of the tangential space in this chart. In the following
text the Einstein sum convention is used, which assumes implicit summation over
indices occurring on the same side of an equation. Often tangential vectors are used
synonymous with the term “vectors” in computer graphics when a direction vector
from pointA to pointB is meant. A tangential vector on an n-dimensional manifold
is represented by n numbers in a chart.

Covectors
The set of operations df : T .M/ ! R that map tangential vectors v 2 T .M/ to a
scalar value v.f / for any function f W M ! R defines another vector space which
is dual to the tangential vectors. Its elements are called covectors:

< df; v >D df .v/ WD v.f / D v�@�f D v�
@f

@x�
(4)

Covectors fulfill the vector space axioms and can be written as linear combination
of covector basis functions dx�:

df DW @f
@x�

dx� (5)

whereby the dual basis vectors fulfill the duality relation

< dx�; @� >D
�
� D � W 1
� ¤ � W 0

(6)

The space of covectors is called the cotangential space TP �.M/. A covector on an
n-dimensional manifold is represented by n numbers in a chart, same as a tangential
vector. However, covectors transform inverse to tangential vectors when changing
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a b c

Fig. 1 The (trivial) constant vector field along the z-axis viewed as vector field @z and as covector
field dz. (a) Vector field @z. (b) Duality relationship among @z and dz. (c) Co-vector field dz

coordinate systems, as is directly obvious from Eq. (6) in the one-dimensional case:
as < dx0; @0 >D 1 must be sustained under coordinate transformation, dx0 must
shrink by the same amount as @0 grows when another coordinate scale is used
to represent these vectors. In higher dimensions this is expressed by an inverse
transformation matrix.

In Euclidean three-dimensional space, a plane is equivalently described by a
“normal vector,” which is orthogonal to the plane. While “normal vectors” are
frequently symbolized by an arrow, similar to tangential vectors, they are not the
same, rather they are dual to tangential vectors. It is more appropriate to visually
symbolize them as a plane. This visual is also supported by (5), which can be
interpreted as the total differential of a function f : a covector describes the change
of a function f along a direction as specified by a tangential vector Ev. A covector
V can thus be visually imagined as a sequence of coplanar (locally flat) planes
at distances given by the magnitude of the covector that count the number of
planes which are crossed by a vector Ew. This number is V.w/. For instance, for
the Cartesian coordinate function x, the covector dx “measures” the “crossing rate”
of a vector w in the direction along the coordinate line x; see Figs. 1 and 2. On
an n-dimensional manifold a covector is correspondingly symbolized by a (n � 1)-
dimensional subspace.

Tensors
A tensor T mn of rank n �m is a multi-linear map of n vectors and m covectors to a
scalar

T mn W T .M/� : : : T .M/n � T �.M/ � : : : T �.M/m ! R (7)

Tensors are elements of a vector space themselves and form the tensor algebra.
They are represented relative to a coordinate system by a set of knCm numbers
for a k-dimensional manifold. Tensors of rank 2 may be represented using matrix
notation. Tensors of type T1

0 are equivalent to covectors and called co-variant; in
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a b c

Fig. 2 The basis vector and covector fields induced by the polar coordinates {r; #; �}. (a) Radial
field dr @r . (b) Azimuthal field d� @� view of the equatorial plane (z-axis towards eye). (c) Altitudal
field d� @� slice along the z-axis

matrix notation (relative to a chart) they correspond to rows. Tensors of type T0
1

are equivalent to a tangential vector and are called contra-variant, corresponding to
columns in matrix notation. The duality relationship between vectors and covectors
then corresponds to the matrix multiplication of a 1 � n row with a n � 1 column,
yielding a single number

< a; b >D< a�@�; b�dx� > � .a0a1 : : : an/

0

B
B
@

b0

b1

: : :

bn

1

C
C
A

(8)

By virtue of the duality relationship (6), the contraction of lower and upper indices
is defined as the interior product � of tensors, which reduces the dimensionality of
the tensor:

� W T mn � T lk ! T m�k
n�1 W u; v 7! �uv (9)

The interior product can be understood (visually) as a generalization of some
“projection” of a tensor onto another one.

Of special importance are symmetric tensors of rank two g 2 T 0
2 with g W

T .M/ � T .M/ ! R W u; v 7! g.u; v/; g.u; v/ D g.v; u/, as they can be used
to define a metric or inner product on the tangential vectors. Its inverse, defined by
operating on the covectors, is called the co-metric. A metric, same as the co-metric,
is represented as a symmetric n�n matrix in a chart for an n-dimensional manifold.

Given a metric tensor, one can define equivalence relationships between tangen-
tial vectors and covectors, which allow to map one into each other. These maps are
called the “musical isomorphisms,” [ and ], as they raise or lower an index in the
coordinate representation:
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[ W T .M/ ! T �.M/ W v�@� 7! v�g��dx
� (10)

] W T �.M/ ! T .M/ W V�dx
� 7! V�g

��@� (11)

As an example application, the “gradient” of a scalar function is given by rf D
]df using this notation. In Euclidean space, the metric is represented by the identity
matrix and the components of vectors are identical to the components of covectors.
As computer graphics usually is considered in Euclidean space, this justifies the
usual negligence of distinction among vectors and covectors; consequently graphics
software only knows about one type of vectors which is uniquely identified by its
number of components. However, when dealing with coordinate transformations or
curvilinear mesh types, distinguishing between tangential vectors and covectors is
unavoidable. Treating them both as the same type within a computer program leads
to confusions and is not safe.

Exterior Product
The exterior product ^ W V � V ! �.V / is an algebraic construction generating
vector space elements of higher dimensions from elements of a vector space V .
The new vector space is denoted �.V /. It is alternating, fulfilling the property
v ^ u D �u ^ v 8u; v 2 V (which results in v ^ v D 0 8v 2 V ).
The exterior product defines an algebra on its elements, the exterior algebra
(or Grassmann algebra). It is a sub-algebra of the tensor algebra consisting of
the antisymmetric tensors. The exterior algebra is defined intrinsically by the
vector space and does not require a metric. For a given n – dimensional vector
space V , there can at most be nth power of an exterior product, consisting of
n different basis vectors. The (n C 1)th power must vanish, because at least
one basis vector would occur twice, and there is exactly one basis vector in
�n.V /.

Elements v 2 �k.V / are called k-vectors, whereby two-vectors are also called
bi-vectors and three-vectors tri-vectors. The number of components of a k-vector
of an n-dimensional vector space is given by the binomial coefficient {n}{k}. For
n D 2 there are two one-vectors and one bi-vector, for n D 3 there are three one-
vectors, three bi-vectors, and one tri-vector. These relationships are depicted by the
Pascal’s triangle, with the row representing the dimensionality of the underlying
base space and the column the vector type:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

(12)

As can be easily read off, for a four-dimensional vector space, there will be four
one-vectors, six bi-vectors, four tri-vectors, and one four-vector. The n-vector of



2108 W. Benger et al.

an n-dimensional vector space is also called a pseudoscalar, the (n � 1) vector a
pseudo-vector.

Visualizing Exterior Products
An exterior algebra is defined on both the tangential vectors and covectors on a
manifold. A bi-vector v formed from tangential vectors is written in chart as

v D v��@� ^ @� (13)

and a bi-covectorU formed from covectors is written in chart as

U D U��dx
� ^ dx� (14)

They both have {n}{2} independent components, due to v�� D �v�� and U�� D
�U�� (three components in 3D, six components in 4D). A bi-tangential vector (13)
can be understood visually as an (oriented, i.e., signed) plane that is spun by the two
defining tangential vectors, independently of the dimensionality of the underlying
base space. A bi-covector (14) corresponds to the subspace of an n-dimensional
hyperspace where a plane is “cut out.” In three dimensions these visualizations
overlap: both a bi-tangential vector and a covector correspond to a plane, and
both a tangential vector and a bi-covector correspond to one-dimensional direction
(“arrow”). In four dimensions, these visuals are more distinct but still overlap: a
covector corresponds to a three-dimensional volume, but a bi-tangential vector is
represented by a plane same as a bi-covector, since cutting out a 2D plane from
four-dimensional space yields a 2D plane again. Only in higher dimensions these
symbolic representations become unique. However, both a co-vector and a pseudo-
vector will always correspond to (i.e., appear as) an (n�1)-dimensional hyperspace.

V�dx
� ” v˛0˛1:::˛n�1@˛0 ^ @˛1 ^ : : : @˛n�1 (15)

v�@� ” V˛0˛1:::˛n�1dx
˛0 ^ dx˛1 ^ : : : dx˛n�1 (16)

A tangential vector – lhs of (16) – can be understood as one specific direction.
Equivalently, it can be seen as “cutting off” all but one (n � 1)-dimensional
hyperspaces from the full n-dimensional space. This equivalence is expressed via
the interior product of a tangential vector v with a pseudo-co-scalar ˝ yielding a
pseudo-covector V (17). Similarly, the interior product of a pseudo-vector with a
pseudo-co-scalar yields a tangential vector (17):

�˝ W T .M/ ! .T �/.n�1/.M/ W V 7! �˝v (17)

�˝ W T .n�1/.M/ ! T �.M/ W V 7! �˝v (18)
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Pseudoscalars and pseudo-co-scalars will always be scalar multiples of the basis
vectors @˛0 ^ @˛1 ^ : : :@˛n and dx˛0 ^ dx˛1 ^ : : : dx˛n . However, when inversing a
coordinate x� ! �x�, they flip sign, whereas a “true” scalar does not. An example
known from Euclidean vector algebra is the allegedly scalar value constructed from
the dot and cross product of three vectors V.u; v;w/ D u � .v � w/ which is the
negative of when its arguments are flipped:

V.u; v;w/ D �V.�u;�v;�w/ D �u � .�v � �w/ (19)

which is actually more obvious when (19) is written as exterior product:

V.u; v;w/ D u ^ v ^ w D V @0 ^ @1 ^ @2 (20)

The result (20) actually describes the multiple of a volume element span by the basis
tangential vectors @� – any volume must be a scalar multiple of this basis volume
element but can flip sign if another convention on the basis vectors is used. This
convention depends on the choice of a right-handed versus left-handed coordinate
system and is expressed by the orientation tensor˝ D ˙@0 ^ @1 ^ @2. In computer
graphics, both left-handed and right-handed coordinate systems occur, which may
lead to lots of confusions.

By combining (18) and (11) – requiring a metric – we get a map from pseudo-
vectors to vectors and reverse. This map is known as the Hodge star operator “*”:

� W T .n�1/.M/ ! T .M/ W V 7� ! ]�	V (21)

The same operation can be applied to the covectors accordingly and generalized
to all vector elements of the exterior algebra on a vector space, establishing a
correspondence between k – vectors and n – k-vectors. The Hodge star operator
allows to identify vectors and pseudo-vectors, similar to how a metric allows to
identify vectors and covectors. The Hodge star operator requires a metric and an
orientation˝ .

A prominent application in physics using the hodge star operator are the Maxwell
equations, which, when written based on the four-dimensional potential A D
V 0dx

0 C Akdx
k (V 0 the electrostatic, Ak the magnetic vector potential), take the

form

d�dA D J (22)

with J the electric current and magnetic flow, which is zero in vacuum. The
combination d * d is equivalent to the Laplace operator “�,” which indicates
that (22) describes electromagnetic waves in vacuum.

Geometric Algebra
Geometric Algebra is motivated by the intention to find a closed algebra on a
vector space with respect to multiplication, which includes existence of an inverse
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operation. There is no concept of dividing vectors in “standard” vector algebra.
Neither the inner or outer product has provided vectors of the same dimensionality
as their arguments, so they do not provide a closed algebra on the vector space.

Geometric Algebra postulates a product on elements of a vector space u, v, w 2 V
that is associative .uv/w D u.vw/, left distributive u.v C w/ D uv C uw, and right
distributive (u C v/w D uw C vw and reduces to the inner product as defined by the
metric v2 D g.v; v/. It can be shown that the sum of the outer product and the inner
product fulfill these requirements; this defines the geometric product as the sum of
both:

uv WD u ^ v C u � v (23)

Since u^v and u � v are of different dimensionalities ({n} {{2} and {n} {{0}, respec-
tively), the result must be in a higher-dimensional vector space of dimensionality
{n} {{2} C {n} {{0}. This space is formed by the linear combination of k-vectors;

its elements are called multivectors. Its dimensionality is
Pn�1

kD0

�
n

k

�

� 2n.

For instance, in two dimensions, the dimension of the space of multivectors is
22 D 4. A multivector V , constructed from tangential vectors on a two-dimensional
manifold, is written as

V D V 0 C V 1@0 C V 2@1 C V 3@0 ^ @1 (24)

with V � the four components of the multivector in a chart. For a three-dimensional
manifold, a multivector on its tangential space has 23 D 8 components and is written
as

V D V 0C
V 1@0 C V 2@1 C V 2@2C
V 4@0 ^ @1 C V 5@1 ^ @2 C V 6@2 ^ @0C
V 7@0 ^ @1 ^ @2

(25)

with V � the eight components of the multivector in a chart. The components of
a multivector have a direct visual interpretation, which is one of the key features
of Geometric Algebra. In 3D, a multivector is the sum of a scalar value, three
directions, three planes, and one volume. These basis elements span the entire
space of multivectors. Geometric Algebra provides intrinsic graphical insight to
the algebraic operations. Its application for computer graphics will be discussed
in Sect. 4.

Vector and Fiber Bundles
The concept of a fiber bundle data model is inspired by its mathematical correspon-
dence. In short, a fiber bundle is a topological space that looks locally like a product
space B � F of a base space B and a fiber space F .
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The fibers of a function f : X ! Y are the pre-images or inverse images of the
points y 2 Y , i.e., the sets of all elements x 2 X with f .x/ D y:

f �1.y/ D fx 2 X jf .x/ D yg

is a fiber of f (at the point y). A fiber can also be the empty set. The union set of all
fibers of a function is called the total space. The definition of a fiber bundle makes
use of a projection mappr1, which is a function that maps each element of a product
space to the element of the first space:

pr1 W X � Y ! X

.x; y/ 7�! x

Let E , B be topological spaces and f : E ! B a continuous map. (E , B , f ) is
called a (fiber) bundle if there exists a space F such that the union of fibers of a
neighborhood Ub � B of each point b 2 B is homeomorphic to Ub � F such that
the projection pr1 of Ub � F is Ub again:

.E;B; f W E ! B/ bundle ” 9F W 8b 2 B W 9Ub W f �1.Ub/
hom' Ub � F

and pr1.Ub � F / D Ub

E is called the total space E, B is called the base space, and f W E ! B the
projection map. The space F is called the fiber type of the bundle or simply the
fiber of the bundle. In other words, the total space can be written locally as a product
space of the base space with some space F . The notation F.B/ D .E;B; f / will
be used to denote a fiber bundle over the base space B . It is also said that the space
F fibers over the base space B.

An important case is the tangent bundle, which is the union of all tangent spaces
Tp .M/ on a manifold M together with the manifold T .M/ WD f.p; v/ W p 2
M; v 2 Tp.M/g. Every differentiable manifold possesses a tangent bundle T .M/.
The dimension of T .M/ is twice the dimension of the underlying manifold M , its
elements are points plus tangential vectors. Tp (M ) is the fiber of the tangent bundle
over the point p.

If a fiber bundle over a space B with fiber F can be written as B � F globally,
then it is called a trivial bundle (B � F;B; pr1). In scientific visualization, usually
only trivial bundles occur. A well-known example for a nontrivial fiber bundle is the
Möbius strip.

Topology: Discretized Manifolds

For computational purposes, a topological space is modeled by a finite set of points.
Such a set of points intrinsically carries a discrete topology by itself, but one usually
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considers embeddings in a space that is homeomorphic to Euclidean space to define
various structures describing their spatial relationships.

A subset c � X of a Hausdorff space X is a k-cell if it is homeomorphic to
an open k-dimensional ball in R

n. The dimension of the cell is k. Zero-cells are
called vertices, one-cells are edges, two-cells are faces or polygons, and three-cells
are polyhedra – see also section “Chains.” An n-cell within an n-dimensional space
is just called a “cell.” (n � 1)-cells are sometimes called “facets” and (n � 2)-cells
are known as “ridges.” For k-cells of arbitrary dimension, incidence and adjacency
relationships are defined as follows: two cells c1, c2 are incident if c1 � @c2, where
@c2 denotes the border of the cell c2. Two cells of the same dimension can never
be incident because dim.c1/ ¤ dim.c2/ for two incident cells c1, c2. c1 is a side
of c2 if dim.c1/ < dim.c2), which may be written as c1 < c2. The special case
dim.c1/ D dim.c2/ � 1 may be denoted by c1 � c2. Two k -cells c1, c2 with k > 0
are called adjacent if they have a common side, i.e.,

cell c1; c2 adjacent ” 9 cell f W f < c1; f < c2

For k D 0, two zero-cells (i.e., vertices) v1, v2 are said to be adjacent if there
exists a one-cell (edge) e which contains both, i.e., v1 < e and v2 < e. Incidence
relationships form an incidence graph. A path within an incidence graph is a cell
tuple: a cell-tuple C within an n-dimensional Hausdorff space is an ordered sequence
of k-cells .cn; cn�1; : : :; c1; c0/ of decreasing dimensions such that 80 < i 	
n W ci�1 � ci . These relationships allow to determine topological neighborhoods:
adjacent cells are called neighbors. The set of all k C 1 cells which are incident
to a k-cell forms a neighborhood of the k-cell. The cells of a Hausdorff space
X constitute a topological base, leading to the following definition: a (“closure-
finite, weak-topology”) CW-complex C, also called a decomposition of a Hausdorff
space X , is a hierarchical system of spaces X.�1/ � X.0/ � X.1/ � : : : � X.n/,
constructed by pairwise disjoint open cells c � X with the Hausdorff topology
[c2CC

, such that X.n/ is obtained from X.n�1/ by attaching adjacent n-cells to each
(n�1)-cell andX.�1/ D ;. The respective subspacesX.n/ are called the n-skeletons
of X . A CW complex can be understood as a set of cells which are glued together
at their subcells. It generalizes the concept of a graph by adding cells of dimension
greater than 1.

Up to now, the definition of a cell was just based on a homeomorphism of the
underlying spaceX and R

n. Note that a cell does not need to be “straight,” such that,
e.g., a two-cell may be constructed from a single vertex and an edge connecting the
vertex to itself, as, e.g., illustrated by J. Hart [34]. Alternative approaches toward
the definition of cells are more restrictively based on isometry to Euclidean space,
defining the notion of “convexity” first. However, it is recommendable to avoid the
assumption of Euclidean space and treating the topological properties of a mesh
purely based on its combinatorial relationships.
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Ontological Scheme and Seven-Level Hierarchy

The concept of the fiber bundle data model builds on the paradigm that numerical
data sets occurring for scientific visualization can be formulated as trivial fiber
bundles (see section “Vector and Fiber Bundles”). Hence, data sets may be
distinguished by their properties in the base space and the fiber space. At each point
of the – discretized – base space, there are some data in the fiber space attached.
Basically a fiber bundle is a set of points with neighborhood information attached
to each of them. An n-dimensional array is a very simple case of a fiber bundle with
neighborhood information given implicitly.

The structure of the base space is described as a CW complex, which categorizes
the topological structure of an n-dimensional base space by a sequence of k-
dimensional skeletons, with 0 < k < n. These skeletons carry certain properties of
the data set: the zero-skeleton describes vertices, the one-skeleton refers to edges,
two-skeleton to the faces, etc., of some mesh (a triangulation of the base space).
Structured grids are triangulations with implicitly given topological properties. For
instance, a regular n-dimensional grid is one where each point has 2n neighbors.

The structure of the fiber space is (usually) not discrete and given by the
properties of the geometrical object residing there, such as a scalar, vector, covector,
and tensor. Same as the base space, the fiber space has a specific dimensionality,
though the dimensionality of the base space and fiber space is independent. Figure 3
demonstrates example images from scientific visualization classified via their fiber
bundle structure. If the fiber space has vector space properties, then the fiber bundle
is a vector bundle and vector operations can be performed on the fiber space, such
as addition, multiplication, and derivation.

The distinction between base space and fiber space is not common use in
computer graphics, where topological properties (base space) are frequently inter-
mixed with geometrical properties (coordinate representations). Operations in the
fiber space can, however, be formulated independently from the base space, which
leads to a more reusable design of software components. Coordinate information,
formally part of the base space, can as well be considered as fiber, leading to further
generalization. The data sets describing a fiber are ideally stored as contiguous
arrays in memory or disk, which allows for optimized array and vector operations.
Such a storage layout turns out to be particularly useful for communicating data
with the GPU using vertex buffer objects: the base space is given by vertex
arrays (e.g., OpenGL glVertexPointer), and fibers are attribute arrays (e.g., OpenGL
glVertexAttribPointer), in the notation of computer graphics. While the process of
hardware rendering in its early times had been based on procedural descriptions
(cached in display lists), vertex buffer objects are much faster in state-of-the-art
technology. Efficient rendering routines are thus implemented as maps from fiber
bundles in RAM to fiber bundles in GPU memory (eventually equipped with a GPU
shader program).

A complex data structure (such as some color-coded time-dependent geometry)
will be built from many data arrays. The main question that needs to be answered by
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Fig. 3 Fiber bundle classification scheme for visualization methods:dimensionality of the base
space (involving the k-skeleton of the discretized manifold) and dimensionality of the fiber space
(involving the number of field quantities per element, zero referring to display of the mere
topological structure). (a) Zero-cells, 0D. (b) Zero-cells, 1D. (c) Zero-cells, 3D. (d) Zero-cells,
6D. (e) One-cells, 0D. (f) One-cells, 1D. (g) One-cells, 3D. (h) One-cells, 6D. (i) Two-cells, 0D.
(j) Two-cells, 1D. (k) Two-cells, 3D. (l) Two-cells, 6D. (m) Three-cells, 0D. (n) Three-cells, 1D.
(o) Three-cells, 3D. (p) Three-cells, 6D

a data model is how to assign a semantic meaning to each of these data arrays – what
do the numerical values actually mean? It is always possible to introduce a set of
keywords with semantics attached to them. In addition, the introduction of keywords
also reduces the number of possible identifiers available for user-specific purpose.
This problem is also known as “name space pollution”. The approach followed in the
data model presented in [7] is to avoid use of keywords as much as possible. Instead,
it assigns the semantics of an element of the data structure into the placement of
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this element. The objective is to describe all data types that occur in an algorithm
(including file reader and rendering routines) within this model. It is formulated as
a graph of up to seven levels (two of them optional). Each level represents a certain
property of the entire data set, the Bundle. These levels are called:

1. Slice
2. Grid
3. Skeleton
4. Representation
5. Field
6. (Fragment)
7. (Compound Elements)

Actual data arrays are stored only below the “Field” level. Given one hierarchy level,
the next one is accessed via some identifier. The type of this identifier differs for
each level: numerical values within a Skeleton level are grouped into Representation
objects, which hold all information that is relative to a certain “representer.” Such
a representer may be a coordinate object that, for instance, refers to some Cartesian
or polar chart, or it may well be another Skeleton object, either within the same
Grid object or even within another one. An actual data set is described through the
existence of entries in each level. Only two of these hierarchy levels are exposed
to the end user; these are the Grid and Field levels. Their corresponding textual
identifiers are arbitrary names specified by the user.

Hierarchy object Identifier type Identifier semantic

Bundle Floating point number Time value

Slice String Grid name

Grid Integer set Topological properties

Skeleton Reference Relationship map

Representation String Field name

Field Multidimensional index Array index

A Grid is subset of data within the Bundle that refers to a specific geometrical
entity. A Grid might be a mesh carrying data such as a triangular surface, a
data cube, a set of data blocks from a parallel computation, or many other data
types. A Field is the collection of data sets given as numbers on a specific
topological component of a Grid, for instance, floating point values describing
pressure or temperature on a Grid’s vertices. All other levels of the data model
describe the properties of the Bundle as construction blocks. The usage of these
construction blocks constitutes a certain language to describe data sets. A Slice
is identified by a single floating point number representing time (generalization to
arbitrary-dimensional parameter spaces is possible). A Skeleton is identified by its
dimensionality, index depth (relationship to the vertices of a Grid), and refinement
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Patch 1

Patch 0

Patch 2

Refinement level 0
Refinement level 1

Refinement level 2
Refinement level 2

Fragment 0

Fragment 1

Fragment 2

Scalar-, vector-, Tensorfield

Fig. 4 Hierarchical structure of the data layout of the concept of a field in computer memory: (1)
organization by multiple resolutions for same spatial domain; (2) multiple coordinate systems cov-
ering different spatial domains (arbitrary overlap possible); (3) fragmentation of fields into blocks
(recombination from parallel data sources); and (4) layout of compound fields as components for
performance reasons, indicated as S (scalar field), {x, y, z} for vector fields, and {xx, xy, yy, yz,
zz, zx} for tensor fields

level. This will be explained in more detail in section “Topological Skeletons.”
The scheme also extends to cases beyond the purely mathematical basis to also
cover data sets that occur in praxis, which is described in section “Non-topological
representations.” A representation is identified via some reference object, which
may be some coordinate system or another Skeleton. The lowest levels of fragments
and compounds describe the internal memory layout of a Field data set and are
optional; some examples are described in [8, 9].

Field Properties
A specific Field identifier may occur in multiple locations. All these locations
together define the properties of a field. The following four properties are express-
ible in the data model:

1. Hierarchical ordering: For a certain point in space, there exist multiple data
values, one for each refinement level. This property describes the topological
structure of the base space.

2. Multiple coordinate systems: One spatial point may have multiple data repre-
sentations relating to different coordinate systems. This property describes the
geometrical structure of the base space.

3. Fragmentation: Data may stem from multiple sources, such as a distributed
multiprocess simulation. The field then consists of multiple data blocks, each
of them covering a subdomain of the field’s base space. Such field fragments
may also overlap, known as “ghost zones.”

4. Separated Compounds: A compound data type, such as a vector or tensor, may be
stored in different data layouts since applications have their own preferences. An
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array of tensors may also be stored as a tensor of arrays, e.g., XYZXYZXYZXYZ
as XXXXYYYYZZZZ. This property describes the internal structure of the fiber
space.

All of these properties are optional. In the most simple case, a field is just
represented by an array of native data types; however, in the most general case
(which the visualization algorithm must always support), the data are distributed
over several such property elements and built from many arrays. With respect to
quick transfer to the GPU, only the ability to handle multiple arrays per data set is
of relevance.

Figure 4 illustrates the organization of the last four levels of the data model.
These consist of Skeleton and Representation objects with optional fragmentation
and compound levels. The ordering of these levels is done merely based on their
semantic importance, with the uppermost level (1) embracing multiple resolutions
of the spatial domain being the most visible one to the end user. Each of these
resolution levels may come with different topological properties, but all arrays
within the same resolution are required to be topologically compatible (i.e., share
the same number of points). There might still be multiple coordinate representations
required for each resolution, which constitutes the second hierarchy level (2) of
multiple coordinate patches. Data per patch may well be distributed over various
fragments (3), which is considered an internal structure of each patch, due to
parallelization or numerical issues, but not fundamental to the physical setup. Last
but not least, fields of multiple components such as vector or tensor fields may be
separated into distinct arrays themselves [7]. This property, merely a performance
issue of in-memory data representation, is not what the end user usually does not
want to be bothered with and is thus set as the lowest level in among these four
entries.

Topological Skeletons
The Skeleton level of the fiber bundle hierarchy describes a certain topological
property. This can be the vertices, the cells, the edges, etc. Its primary purpose
is to describe the skeletons of a CW complex, but they may also be used
to specify mesh refinement levels and agglomerations of certain elements. All
data fields that are stored within a Skeleton level provide the same number of
elements. In other words they share their index space (a data space in HDF5
terminology). Each Topology object within a Grid object is uniquely identified
via a set of integers, which are the dimension (e.g., the dimension of a k-cell),
index depth (how many dereferences are required to access coordinate information
in the underlying manifold), and refinement level (a multidimensional index,
in general). Vertices – index depth 0 – of a topological space of dimension
n define a Skeleton of type (n, 0). Edges are one-dimensional sets of vertex
indices; therefore, their index depth is 1 and their Skeleton type is (1,1). Faces
are two-dimensional sets of vertex indices, hence Skeleton type (2, 1). Cells –
such as a tetrahedron or hexahedra – are described by a Skeleton type (3, 1).
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Fig. 5 The five-level organization scheme used for atmospheric data (MM5 model data) and
surge data (ADCIRC simulation model), built upon common topological property descriptions
with additional fields (From Venkataraman et al. [81])

All the Skeleton objects of index depth 1 build the k-skeletons of a manifold’s
triangulation.

Higher index depths describe sets of k-cells. For instance, a set of edges describes
a line – a path along vertices in a Grid. Such a collection of edges will fit into a
Skeleton of dimension 1 and depth 2, i.e., type (1, 2). It is a one-dimensional object
of indices that refer to edges that refer to vertices.

Non-topological Representations
Polynomial coordinates, information on field fragments, histograms, and color maps
can be formulated in the fiber bundle model as well. These quantities are no longer
direct correspondences of the mathematical background, but they may still be cast
into the given context.

Coordinates may be given procedurally, such as via some polynomial expression.
The data for such expressions may be stored in a Skeleton of negative index depth –
as these data are required to compute the vertex coordinates and more fundamental
than these in this case.
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A fragment of a Field given on vertices – the (n, 0)-Skeleton of a Grid – defines an
n-dimensional subset of the Grid, defined by the hull of the vertices corresponding to
the fragments. These may be expressed as a (n, 2)-Skeleton, where the Field object
named “Positions” (represented relative to the vertices) refers to the (global) vertex
indices of the respective fragments. The representation in coordinates corresponds
to its range, known as the bounding box. Similarly, a field given on the vertices will
correspond to the field’s numerical minimum/maximum range within this fragment.

A histogram is the representation of a field’s vertex complex in a “chart”
describing the required discretization, depending on the min/max range and a
number count. A color map (transfer function) can be interpreted as a chart object
itself. It has no intrinsically geometrical meaning, but provides means to transform
some data. For instance, some scalar value will be transformed to some RGB triple
using some color map. A scalar field represented in a certain color map is therefore
of type RGB values and could be stored as an array of RGB values for each vertex.
In practice, this will not be done since such transformation is performed in real time
by modern graphics hardware. However, this interpretation of a color map as a chart
object tells how color maps may be stored in the fiber bundle data model.

3 Differential Forms and Topology

This section not only introduces the concepts of differential forms and their discrete
counterparts but also illustrates that similar concepts are applied in several separate
areas of scientific visualization. Since the available resources are discrete and finite,
concepts mirroring these characteristics have to be applied to visualize complex data
sets. The most distinguished algebraic structure is described by exterior algebra (or
Grassmann algebra, see also section “Exterior Product”), which comes with two
operations, the exterior product (or wedge product) and the exterior derivative.

Differential Forms

Manifolds can be seen as a precursor to model physical quantities of space. Charts
on a manifold provide coordinates, which allows using concepts which are already
well established. Furthermore, they are crucial for the field of visualization, as they
are key components to obtain depictable expressions of abstract entities. Tangential
vectors were already introduced in section “Tangential Vectors” as derivatives along
a curve. Then a one-form ˛ is defined as a linear mapping which assigns a value
to each tangential vector v from the tangent space TP .M/, i.e., ˛ W TP .M/ ! R.
They are commonly called co-variant vectors, covectors (see section “Tangential
Vectors”), or Pfaff-forms. The set of one-forms generates the dual vector space
or cotangential space T �

p .M/. It is important to highlight that the tangent vectors
v 2 TP .M/ are not contained in the manifold itself, so the differential forms also
generate an additional space over P 2 M . In the following, these one-forms are
generalized to (alternating) differential forms.
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An alternative point of view treats a tangential vector v as a linear mapping
which assigns a scalar to each one-form ˛ by < ˛; v >2 R. By omitting one of
the arguments of the obtained mappings, < ˛; : > or ˛.v/ and <., v > or v.˛/,
linear objects are defined. Multi-linear mappings depending on multiple vectors or
covectors appear as an extension of this concept and are commonly called tensors


 W T �m � T n ! R (26)

where n andm are natural numbers and T n and T �m represent the n andm powered
Cartesian product of the tangential space or the dual vector space (cotangential
space). A tensor 
 is called an (n, m)-tensor which assigns a scalar value to a set of
m covectors and n vectors. All tensors of a fixed type (n,m) generate a tensor space
attached at the point P 2 M . The union of all tensor spaces at the points P 2 M

is called a tensor bundle. The tangential and cotangential bundles are specialized
cases for (1, 0) and (0, 1) tensor bundles, respectively. Fully antisymmetric tensors
of type (0, m) may be identified with differential forms of degree m. For m >

dim(M ), where dim(M ) represents the dimension of the manifold, differential
forms vanish.

The exterior derivative or Cartan derivative of differential forms generates a pC
1-form df from a p-form f and conforms to the following requirements:

1. Compatibility with the wedge product (product rule): d.˛ ^ ˇ/ D d˛ ^ ˇ C
.�1/m˛ ^ dˇ

2. Nilpotency of the operation d , d ı d D 0, depicted in Fig. 11
3. Linearity

A subset of one-forms is obtained as a differential df of zero-forms (functions)
f at P and are called exact differential forms. For an n-dimensional manifoldM ,
a one-form can be depicted by drawing (n�1)-dimensional surfaces, e.g., for the
three-dimensional space, Fig. 6 depicts a possible graphical representation of a
one-form attached to M . This depiction also enables a graphical representation
on how to integrate differential forms, where only the number of surfaces which
are intersected by the integration domain has to be counted:

< df; v >D df .v/ D ˛.v/ (27)

A consequence of being exact includes the closeness property d˛ D 0.
Furthermore, the integral

R

Cp
df with Cp representing an integration domain, e.g.,

an interval x1 and x2, results in the same value f .x2/ � f .x1/. In the general
case, a p-form is not always the exterior derivative of a p-one-form; therefore, the
integration of p-forms is not independent of the integration domain. An example is
given by the exterior derivative of a p-form ˇ resulting in a p C 1-form 
 D dˇ.
The structure of such a generated differential form can be depicted by a tube-like
structure such as in Fig. 7. While the wedge product of an r-form and an s-form
results in an r C s-form, this resulting form is not necessarily representable as a
derivative. Figure 7 depicts a two-form which is not constructed by the exterior
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Fig. 6 Possible graphical
representation of the
topological structure of
one-forms in three
dimensions. Note that the
graphical display of
differential forms varies in
different dimension and does
not depend on the selected
basis elements

Fig. 7 Possible graphical
representation of a general
two-form generated by ˛ ^ ˇ,
where ˛ and ˇ are one-forms.
The topologically tube-like
structure of the two-forms is
enclosed by the depicted
planes

derivative but instead by ˛ ^ˇ, where ˛ and ˇ are one-forms. In the general case, a
p-form attached on an n-dimensional manifoldM is represented by using .n� p/-
dimensional surfaces.

By sequentially applying the operation d to (0, m) for 0 	 m 	 dim(M ),
the de Rham complex is obtained, which enables the investigation of the relation
of closed and exact forms. The de Rham complex enables the transition from
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the continuous differential forms to the discrete counterpart, so-called cochains.
The already briefly mentioned topic of integration of differential forms is now
mapped onto the integration of these cochains. To complete the description, the
notion of chains, also modeled by multivectors (as used in Geometric Algebra, see
section “Geometric Algebra” and Sect. 4) or fully antisymmetric (n, 0)-tensors, as
description of integration domains is presented, where a chain is a collection of
n-cells.

The connection between chains and cochains is investigated in algebraic topol-
ogy under the name of homology theory, where chains and cochains are collected in
additive Abelian groups Cp (M ).

Chains
The de Rham complex collects cochains similar to a cell complex aggregating cells
as elements of chains. To use these elements, e.g., all edges, in a computational
manner, a mapping of the n-cells onto an algebraic structure is needed. An algebraic
representation of the assembly of cells, an n-chain, over a cell complex K and a
vector space V can be written by

cn D
Xj

iD1
wi �

i
n � in 2 K; wi 2 V

which is closed under reversal of the orientation:

8�in 2 cn there is � �in 2 cn

The different topological elements are called cells, and the dimensionality is
expressed by adding the dimension such as a three-cell for a volume, a two-cell for
surface elements, a one-cell for lines, and a zero-cell for vertices. If the coefficients
are restricted to {�1; 0; 1} 2 Z, the following classification for elements of a cell
complex is obtained:

• 0: if the cell is not in the complex
• 1: if the unchanged cell is in the complex
• �1 W if the orientation is changed

The so-called boundary operator is a map between sets of chains Cp on a
cell complex K . Let us denote the i th p-cell as �ip D k0; : : : kp , whereby
�ip 2 K . The boundary operator @p defines a (p � 1)-chain computed
from a p-chain: @p W Cp.K/ Ü Cp�1.K/. The boundary of a cell
�
j
p can be written as alternating sum over elements of dimension p �

1:

@p�
i
p D

X

i
.�1/i Œk0; k1; : : : ; Qki ; : : : kn� (28)
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Fig. 8 Representation of a one-chain � i1 with zero-chain boundary �j0 (left) and a two-chain �2

with one-chain boundary �k1 (right)

where Qki indicates that ki is deleted from the sequence. This map is compatible with
the additive and the external multiplicative structure of chains and builds a linear
transformation:

Cp ! Cp�1 (29)

Therefore, the boundary operator is linear

@
�X

i
wi �

i
p

�

D
X

i
wi
�

@�ip

�

(30)

which means that the boundary operator can be applied separately to each cell
of a chain. Using the boundary operator on a sequence of chains of different
dimensions results in a chain complex C� D fCp; @pg such that the complex
property

@p�1@p D 0 (31)

is given. Homological concepts are visible here for the first time, as homology
examines the connectivity between two immediately neighboring dimensions.
Figure 8 depicts two examples of one-chains and two-chains and an example of
the boundary operator.

Applying the appropriate boundary operator to the two-chain example reads

@2�2 D �1
1 C �2

1 C �3
1 C �4

1

@1.�
1
1 C �2

1 C �3
1 C �4

1 / D �1
0 C �2

0 � �2
0 C �3

0 � �3
0 C �4

0 � �4
0 � �1

0 D 0
(33)
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Fig. 9 Examples of violations of correct cell attachment. Left: missing zero-cell. Middle: cells do
not intersect at vertices. Right: intersection of cells

A different view on chain complexes presents itself when the main focus is placed
on the cells within a chain. To cover even the most abstract cases, a cell is defined
as a subset c � X of a Hausdorff space X if it is homeomorphic to the interior of
the open n-dimensional ball Dn D fx 2 R

n W jxj < 1g. The number n is unique
due to the invariance of domain theorem [13] and is called the dimension of c,
whereas homeomorphic means that two or more spaces share the same topological
characteristics. The following list assigns terms corresponding to other areas of
scientific computing:

• 0-cell: point
• 1-cell: edge
• 2-cell: facet
• n-cell: cell

A cell complex K (see also section “Topology: Discretized Manifolds”) can be
described by a set of cells that satisfy the following properties:

• The boundary of each p-cell �ip is a finite union of (p � 1)-cells in K W @p�ip D
[m�mp�1.

• The intersection of any two cells �ip; �
j
p in K is either empty or is a unique cell in

K.

The result of these operations are subspaces X.n/ which are called the n-skeletons
of the cell complex. Incidence and adjacence relations are then available. Examples
for incidence can be given by vertex on edge relation and for adjacency by vertex to
vertex relations. This cell complex with the underlying topological space guarantees
that all interdimensional objects are connected in an appropriate manner. Although
there are various possible attachments of cells, only one process results in a cell
complex, see Fig. 9.

Cochains
In addition to chain and cell complices, scientific visualization requires the notation
and access mechanisms to global quantities related to macroscopic n-dimensional
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space-time domains. The differential forms which are necessary concepts to handle
physical properties can also be projected onto discrete counterparts, which are
called cochains. This collection of possible quantities, which can be measured,
can then be called a section of a fiber bundle, which permits the modeling of
these measurements as a function that can be integrated on arbitrary n-dimensional
(sub)domains or multivectors. This function can then be seen as the abstracted
process of measurement of this quantity [55, 75]. The concept of cochains allows
the association of numbers not only to single cells, as chains do, but also to
assemblies of cells. Briefly, the necessary requirements are that this mapping is not
only orientation dependent but also linear with respect to the assembly of cells. A
cochain representation is now the global quantity association with subdomains of a
cell complex, which can be arbitrarily built to discretize a domain.

A linear transformation 
 of the n-chains into the field R of real numbers forms a
vector space cn �! ^f
gR and is called a vector-valuedm-dimensional cochain or

short m-cochain. The coboundary ı of an m-cochain is an (m + 1)-cochain defined
as

ıcm D
X

i
vi �i ; where vi D

X

b 2 faces.�i /

.b; �i /cm.b/ (34)

Thus, the coboundary operator assigns nonzero coefficients only to those (m C 1)
cells that have cm as a face. As can be seen, ıcm depends not only on cm but on
how cm lies in the complex K. This is a fundamental difference between the two
operators @ and ı. An example is given in Fig. 10 where the coboundary operator is
used on a one-cell. The right part ıııK of Fig. 10 is also depicted for the continuous
differential forms in Fig. 7. The coboundary of anm-cochain is an .mC 1/-cochain
which assigns to each (mC1) cell the sum of the values that themC1-cochain assign
to them-cells which form the boundary of the (mC1) cell. Each quantity appears in
the sum multiplied by the corresponding incidence number. Cochain complices [33,
35] are similar to chain complices except that the arrows are reversed, so a cochain
complex C � D fCm; ım} is a sequence of modules Cm and homomorphisms:

ım W Cm ! CmC1 (35)

such that

ımC1ım D 0 (36)

K1 ı� ! ıK1 ı� ! ı ı ıK1 D 0. Proceeding from left to right, a one-cochain
represented by a line segment, a two-cochain generated by the product of two one-
forms, and a three-cochain depicted by volume objects are illustrated.
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+ / − + / −

Fig. 10 Cochain complex with the corresponding coboundary operator

Then, the following sequence with ı ı ı D 0 is generated:

0
ı� !C 0 ı� !C 1 ı� !C 2 ı� !C 3 ı� ! 0 (37)

Cochains are the algebraic equivalent of alternating differential forms, while the
coboundary process is the algebraic equivalent of the external derivative and can
therefore be considered as the discrete counterpart of the differential operators:

• grad.
• curl.
• div.

It indeed satisfies the property ı ı ı � 0 corresponding to

• curlgrad. � 0
• divcurl. � 0

Duality Between Chains and Cochains
Furthermore, a definition of the adjoint nature of @; ı W Cp ! CpC1 can be given:

hcp; @cpC1i D hıcp; cpC1i (38)

The concepts of chains and cochains coincide on finite complices [45]. Geometri-
cally, however, Cp and Cp are distinct [12] despite an isomorphism. An element
of Cp is a formal sum of p-cells, where an element of Cp is a linear function
that maps elements of Cp into a field. Chains are dimensionless multiplicities of
aggregated cells, whereas those associated with cochains may be interpreted as
physical quantities [65]. The extension of cochains from single cell weights to
quantities associated with assemblies of cells is not trivial and makes cochains
very different from chains, even on finite cell complices. Nevertheless, there is an
important duality between p-chains and p-cochains. The first part of the de Rham
(cohomology group) complex, depicted in Fig. 11 on the left, is the set of closed
one-forms modulo the set of exact one-forms denoted by

H 1 D Z1=B1 (39)
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Fig. 11 A graphical
representation of closed and
exact forms. The forms Z1,
B1, Z0, and B0 are closed
forms, while only the forms
B0 and B1 are exact forms.
The nilpotency of the
operation d forces the exact
forms to vanish

0

C1
C0 = Z0

Z1

B0

0 0 0

This group is therefore trivial (only the zero element) if all closed one-forms are
exact. If the corresponding space is multiply connected, then there are closed one-
chains that are not themselves boundaries, and there are closed one-forms that are
not themselves exact.

For a chain cp 2 Cp.K;R/ and a cochain cp 2 Cp.K;R/, the integral of cp

over cp is denoted by
R

cp
cp , and integration can be regarded as a mapping, where

D represents the corresponding dimension:

Z

W Cp.K/ � Cp.K/ ! R; for 0 	 p 	 D (40)

Integration in the context of cochains is a linear operation: given a1; a2 2 R,
cp;1cp;2 2 Cp.K/ and cp 2 Cp.K/, reads

Z

cp

a1c
p;1 C a2c

p;2 D a1

Z

cp

cp;1 C a2

Z

cp

cp;2 (41)

Reversing the orientation of a chain means that integrals over that chain acquire the
opposite sign

Z

�cp
cp D �

Z

cp

cp (42)

using the set of p-chains with vector space properties Cp.K;R/, e.g., linear
combinations of p-chains with coefficients in the field R. For coefficients in R,
the operation of integration can be regarded as a bilinear pairing between p-chains
and p-cochains. Furthermore, for reasonable p-chains and p-cochains, this bilinear
pairing for integration is nondegenerate,

if
Z

cp

cp D 0 8cp 2 Cp.K/; then cp D 0 (43)
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and

if
Z

cp

cp D 0 8cp 2 Cp.K/; then cp D 0 (44)

The integration domain can be described by, using Geometric Algebra notation,
the exterior product applied to multivectors. An example is then given by the
generalized Stokes theorem:

Z

cp

df D
Z

@cp

f (45)

or

< df; cp > D < f; @cp > (46)

The generalized Stokes theorem combines two important concepts, the integration
domain and the form to be integrated.

Homology and Cohomology

The concepts of chains can also be used to characterize properties of spaces,
the homology and cohomology, where it is only necessary to use Cp.K;Z/. The
algebraic structure of chains is an important concept, e.g., to detect a p-dimensional
hole that is not the boundary of a p C 1-chain, which is called a p-cycle. For short,
a cycle is a chain whose boundary is @pcp D 0, a closed chain. The introduced
boundary operator can also be related to homological terms. A boundary is a chain
bp for which there is a chain cp such that @pcp D bp . Since @ ı @ D 0; Bn � Zn
is obtained. The homology is then defined by Hn D Zn=Bn. The homology of a
space is a sequence of vector spaces. The topological classification of homology is
defined by

Bp D im @pC1 and
Zp D ker @p

so that Bp � Zp and

Hp D Zp=Bp

where ˇp D {Rank} Hp . Here {im} is the image and {ker} is the kernel of the
mapping. For cohomology

Bp D im dpC1 and
Zp D ker dp
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Fig. 12 Topologically a
torus is the product of two
circles. The partially shaded
circle is spun around the fully
drawn circle which can be
interpreted as the closure of a
cylinder onto itself

so that Bp � Zp and

Hp D Zp=Bp

where ˇp D {Rank} Hp . An important property of these vector spaces is given
by ˇ, which corresponds to the dimension of the vector spaces H and is called the
Betti number [35,86]. Betti numbers identify the number of nonhomologous cycles
which are not boundaries:

• ˇ0 counts the number of connected components.
• ˇ1 counts the number of tunnels (topological holes).
• ˇ2 counts the number of enclosed cavities.

The number of connected components gives the number of distinct entities of a
given object, whereas tunnels describe the number of separated parts of space. In
contrast to a tunnel, the enclosed cavities are completely bounded by the object.

Examples for the Betti numbers of various geometrical objects are stated by:

• Cylinder: ˇ0 D 1; ˇ1 D 1; ˇn D 08n 
 2. The cylinder consists of one
connected component, which forms a single separation of space. Therefore no
enclosed cavitiy is present.

• Sphere: ˇ0 D 1; ˇ1 D 0; ˇ2 D 1; ˇn D 08n 
 3. If ˇ1 and ˇ2 are switched, a
sphere is obtained by contracting the separation by generating an enclosed cavity
from the tunnel.

• Torus: ˇ0 D 1; ˇ1 D 2; ˇ2 D 1; ˇn D 08n 
 3. Closing a cylinder onto
itself results in a torus which not only generates an enclosed cavity but also
maintains the cylinder’s tunnel. An additional tunnel is introduced due to the
closing procedure which is depicted in Fig. 12 as the central hole.

The Euler characteristics, which is an invariant, can be derived from the Betti
numbers by: � D ˇ0 � ˇ1 C ˇ2.
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Fig. 13 A graphical representation of (co)homology for a three-dimensional cell complex

Fig. 14 Illustration of cycles
A, B , C and a boundary C .
A, B are not boundaries

A

B

C

Figure 13 depicts the homology of a three-dimensional chain complex with the
respective images and kernels, where the chain complex of K is defined by {im}
@pC1 � {ker} @p . As can be seen, the boundary operator expression yields @p ı
@pC1 D 0.

To give an example, the first homology group is the set of closed one-chains
(curves) modulo the closed one-chains which are also boundaries. This group is
denoted by H1 D Z1=B1, where Z1 are cycles or closed one-chains and B1 are
one-boundaries. Another example is given in Fig. 14, where A, B , C are cycles and
a boundary C , but A, B are not boundaries.

Topology

Conceptual consistency in scientific visualization is provided by topology. Cell
complices convey topology in a computationally treatable manner and can therefore
be introduced by much simpler definitions. A topological space .X; T / is the
collection of sets T that include:
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Fig. 15 Topologically a torus and a coffee mug are equivalent and so have the same Betti numbers

• The space itself X and the empty set ;
• The union of any of these sets
• The finite intersection of any of the sets

The family T is called a topology on X , and the members of T are called open
sets. As an example a basic set X D fa; b; cg and a topology is given:

.X; T / D f ;;
fag; fbg; fcg;
fa; bg; fa; cg; fb; cg;
fa; b; cgg

The general definition for a topological space is very abstract and allows several
topological spaces which are not useful in scientific visualization, e.g., a topological
space .X; T / with a trivial topology T D fØ; Xg. So basic mechanisms of
separation within a topological space are required, e.g., the Hausdorff property. A
topological space .X; T / is said to be Hausdorff if, given x; y 2 X with x ¤ y,
there exist open sets U1; U2 such that x 2 U1; y 2 U2 and U1 \ U2 D ;. But the
question remains on what “topology” actually is. A brief explanation is given by the
study of properties of an object that do not change under deformation. To describe
this deformation process, abstract rules can be stated and if they are true, then an
objectA can be transformed into an object B without change. The two objectsA, B
are then called homeomorphic:

• All points of A $ all points of B
• 1 � 1 correspondence (no overlap)
• Bicontinous (continuous both ways)
• Cannot tear, join, poke/seal holes



2132 W. Benger et al.

The deformation is 1 � 1 if each point of A maps to a single point on B and
there is no overlap. If this deformation is continuous, A cannot be teared, joined,
disrupted, or sealed up. If two objects are homeomorphic, then they are topologically
equivalent. Figure 15 illustrates an example of a torus and coffee mug which are
a prominent example for topological equivalence. The torus can be continuously
deformed, without tearing, joining, disrupting, or sealing up, into a cup. The
hole in the torus becomes the handle of the cup. But why should anybody in
visualization be concerned about how objects can be deformed? Topology is much
more than the illustrated properties, it can be much better described by the study of
connectedness:

• Understanding of space properties: how connectivity happens.
• Analysis of space properties: how connectivity can be determined.
• Articulation of space properties: how connectivity can be described.
• Control about space properties: how connectivity can be enforced.

Topology studies properties of sets that do not change under well-behaved
transformations (homeomorphisms). These properties include completeness and
compactness. In visualization, one property is of significance: connectedness.
Especially, how many disjoint components can be distinguished and how many
holes (or tunnels) are in these components. Geometric configuration is another
interesting aspect in visualization because it is important to know which of these
components have how many holes, and where the holes are relative to each other.
Several operations in scientific visualization can be summarized:

• Simplification: reduction of data complexity. If objects are described with
fewer properties, important properties such as components or holes should be
retained or removed, if these properties become insignificant, unnecessary, or
imperceptible.

• Compression: reduction of data storage. It is important that each operation does
not alter important features (interaction of geometrical and topological features).

• Texturing: visualization context elements. How can a texture kept consistent if
an object, e.g., a torus, is transformed into another object, e.g., a coffee cup.

• Morphing: transforming one object into another. If an object is morphed into
another, topological features have to remain, e.g., the torus hole has to become
the coffee cup handle hole.

4 Geometric Algebra Computing

Geometric Algebra as a general mathematical system unites many mathematical
concepts such as vector algebra, quaternions, Plücker coordinates, and projective
geometry, and it easily deals with geometric objects, operations, and transfor-
mations. A lot of applications in computer graphics, computer vision, and other
engineering areas can benefit from these properties. In a ray-tracing application, for
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ray R

bounding sphere S

Inter section = R ^ S

Fig. 16 Spheres and lines are basic entities of Geometric Algebra to compute with. Operations
like the intersection of them are easily expressed with the help of their outer product. The result
of the intersection of a ray and a (bounding) sphere is another geometric entity, the point pair of
the two points of the line intersecting the sphere. The sign of the square of the point pair easily
indicates whether there is a real intersection or not

instance, the intersection of a ray and a bounding sphere is needed. According to
Fig. 16, this can be easily expressed with the help of the outer product of these two
geometric entities.

Geometric Algebra is based on the work of Hermann Grassmann (see the
conference [62] celebrating his 200th birthday in 2009) and William Clifford
[20, 21]. Pioneering work has been done by David Hestenes, who first applied
Geometric Algebra to problems in mechanics and physics [39, 40].

The first time Geometric Algebra was introduced to a wider computer graphics
audience was through a couple of courses at the SIGGRAPH conferences in
2000 and 2001 (see [57]) and later at the Eurographics [41]. Researchers at the
University of Cambridge, UK, have applied Geometric Algebra to a number of
graphics-related projects. Geomerics [71] is a start-up company in Cambridge
specializing in simulation software for physics and lighting, which presented
its new technology allowing real-time radiosity in videogames utilizing com-
modity graphics-processing hardware. The technology is based on Geometric
Algebra wavelet technology. Researchers at the University of Amsterdam, the
Netherlands, are applying their fundamental research on Geometric Algebra to
3D computer vision and to ray tracing and on the efficient software imple-
mentation of Geometric Algebra. Researchers from Guadalajara, Mexico, are
primarily dealing with the application of Geometric Algebra in the field of
computer vision, robot vision, and kinematics. They are using Geometric Algebra,
for instance, for tasks like visual-guided grasping, camera self-localization, and
reconstruction of shape and motion. Their methods for geometric neural com-
puting are used for tasks like pattern recognition [5]. Registration, the task of
finding correspondences between two point sets, is solved based on Geometric
Algebra methods in [65]. Some of their kinematics algorithms are dealing with
inverse kinematics, fixation, and grasping as well as with kinematics and differ-
ential kinematics of binocular robot heads. At the University of Kiel, Germany,
researchers are applying Geometric Algebra to robot vision and pose estimation
[66]. They also do some interesting research dealing, for instance, with neu-
ral networks based on Geometric Algebra [14]. In addition to these examples,
there are many other applications like Geometric Algebra Fourier transforms for
the visualization and analysis of vector fields [24] or classification and clus-
tering of spatial patterns with Geometric Algebra [63] showing the wide area
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Table 1 Multiplication table of the 2D Geometric Algebra. This algebra consists of basic
algebraic objects of grade (dimension) 0, the scalar; of grade 1, the two basis vectors e1 and e2;
and of grade 2, the bi-vector e1 ^e2, which can be identified with the imaginary number i squaring
to �1

1 e1 e2 e1 ^ e2

1 1 e1 e2 e1 ^ e2

e1 e1 1 e1 ^ e2 e2

e2 e2 �e1 ^ e2 1 �e1

e1 ^ e2 e1 ^ e2 �e2 e1 �1

Table 2 List of the basic geometric primitives provided by the 5D conformal Geometric Algebra.
The bold characters represent 3D entities (x is a 3D point, n is a 3D normal vector, and x2 is
the scalar product of the 3D vector x). The two additional basis vectors e0 and e

1

represent the
origin and infinity. Based on the outer product, circles and lines can be described as intersections
of two spheres, respectively two planes. The parameter r represents the radius of the sphere and
the parameter d the distance of the plane to the origin

Entity Representation

Point P D x C 1
2 x2e

1

C e0

Sphere S D P � 1
2 r

2e
1

Plane � D n C de
1

Circle Z D S1 ^ S2

Line L D �1 ^ �2

of possibilities of advantageously using this mathematical system in engineering
applications.

Benefits of Geometric Algebra

As follows, we highlight some of the properties of Geometric Algebra that make it
advantageous for a lot of engineering applications.

Unification of Mathematical Systems
In the wide range of engineering applications, many different mathematical systems
are currently used. One notable advantage of Geometric Algebra is that it subsumes
mathematical systems like vector algebra, complex analysis, quaternions, or Plücker
coordinates. Table 1, for instance, describes how complex numbers can be identified
within the 2D Geometric Algebra. This algebra does not only contain the two basis
vectors e1 and e2 but also basis elements of grade (dimension) 0 and 2 representing
the scalar and imaginary part of complex numbers.

Other examples are Plücker coordinates based on the description of lines in
conformal geometric algebra (see section “Conformal Geometric Algebra”) or
quaternions as to be identified in Fig. 19 with their imaginary units.



Differential Methods for Multi-dimensional Visual Data Analysis 2135

Fig. 17 Spheres and circles
are basic entities of
Geometric Algebra.
Operations like the
intersection of two spheres
are easily expressed

Sphere S1

Sphere S2

Circle = S1 ^ S2

Uniform Handling of Different Geometric Primitives
Conformal Geometric Algebra, the Geometric Algebra of conformal space we
focus on, is able to easily treat different geometric objects. Table 2 presents the
representation of points, lines, circles, spheres, and planes as the same entities
algebraically. Consider the spheres of Fig. 17, for instance. These spheres are simply
represented by

S D P � 1

2
r2e1 (47)

based on their center point P , their radius r , and the basis vector e1 which
represents the point at infinity. The circle of intersection of the spheres is then easily
computed using the outer product to operate on the spheres as simply as if they were
vectors:

Z D S1 ^ S2 (48)

This way of computing with Geometric Algebra clearly benefits computer
graphics applications.

Simplified Geometric Operations
Geometric operations like rotations, translations (see [41]), and reflections can
be easily treated within the algebra. There is no need to change the way of
describing them with other approaches (vector algebra, for instance, additionally
needs matrices in order to describe transformations).

Figure 18 visualizes the reflection of the ray R from one plane

� D n C de1 (49)

(see Table 2). The reflected line, drawn in magenta,

Rreflected D ��R
�

(50)
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Fig. 18 The ray R is
reflected from the plane �
computing � �R

�

R p

p R
p

—

is computed with the help of the reflection operation including the reflection object
as well as the object to be reflected.

More Efficient Implementations
Geometric Algebra as a mathematical language suggests a clearer structure and
greater elegance in understanding methods and formulae. But, what about the
runtime performance for derived algorithms? Geometric Algebra inherently has a
large potential for creating optimizations leading to more highly efficient implemen-
tations especially for parallel platforms. Gaalop [44], as presented in section “Com-
putational Efficiency of Geometric Algebra Using Gaalop,” is an approach offering
dramatically improved optimizations.

Conformal Geometric Algebra

Conformal Geometric Algebra is a 5D Geometric Algebra based on the 3D basis
vectors e1, e2, and e3 as well as on the two additional base vectors e0 representing
the origin and e1 representing infinity.

Blades are the basic computational elements and the basic geometric entities of
geometric algebras. The 5D conformal Geometric Algebra consists of blades with
grades (dimension) 0, 1, 2, 3, 4, and 5, whereby a scalar is a 0-blade (blade of
grade 0). The element of grade five is called the pseudoscalar. A linear combination
of blades is called a k-vector. So a bi-vector is a linear combination of blades with
grade 2. Other k-vectors are vectors (grade 1), tri-vectors (grade 3), and quadvectors
(grade 4). Furthermore, a linear combination of blades of different grades is called a
multivector. Multivectors are the general elements of a Geometric Algebra. Table 3
lists all the 32 blades of conformal Geometric Algebra. The indices indicate 1,
scalar; 2–6, vector; 7–16, bi-vector; 17–26, tri-vector; 27–31, quadvector; and 32,
pseudoscalar.

A point P D x1e1 Cx2e2 Cx3e3 C 1
2 x2e1 Ce0 (see Table 2), for instance, can be

written in terms of a multivector as the following linear combination of blades bŒi �:
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Table 3 The 32 blades of
the 5D conformal Geometric
Algebra

Index Blade Grade

1 1 0

2 e1 1

3 e2 1

4 e3 1

5 e
1

1

6 e0 1

7 e1 ^ e2 2

8 e1 ^ e3 2

9 e1 ^ e
1

2

10 e1 ^ e0 2

11 e2 ^ e3 2

12 e2 ^ e
1

2

13 e2 ^ e0 2

14 e3 ^ e
1

2

15 e3 ^ e0 2

16 e
1

^ e0 2

17 e1 ^ e2 ^ e3 3

18 e1 ^ e2 ^ e
1

3

19 e1 ^ e2 ^ e0 3

20 e1 ^ e3 ^ e
1

3

21 e1 ^ e3 ^ e0 3

22 e1 ^ e
1

^ e0 3

23 e2 ^ e3 ^ e
1

3

24 e2 ^ e3 ^ e0 3

25 e2 ^ e
1

^ e0 3

26 e3 ^ e
1

^ e0 3

27 e1 ^ e2 ^ e3 ^ e
1

4

28 e1 ^ e2 ^ e3 ^ e0 4

29 e1 ^ e2 ^ e
1

^ e0 4

30 e1 ^ e3 ^ e
1

^ e0 4

31 e2 ^ e3 ^ e
1

^ e0 4

32 e1 ^ e2 ^ e3 ^ e
1

^ e0 5

P D x1�bŒ2�C x2�bŒ3�C x3�bŒ4�C 1

2
x2�bŒ5�C bŒ6� (51)

with multivector indices according to Table 3.
Figure 19 describes some interpretations of the 32 basis blades of conformal

Geometric Algebra. Scalars like the number � are grade 0 entities. They can be
combined with the blade representing the imaginary unit i to complex numbers
or with the blades representing the imaginary units i , j , k to quaternions. Since
quaternions describe rotations, this kind of transformation can be handled within the
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Fig. 19 The blades of conformal Geometric Algebra. Spheres and planes, for instance, are vectors.
Lines and circles can be represented as bi-vectors. Other mathematical systems like complex
numbers or quaternions can be identified based on their imaginary units i , j , k. This is why also
transformations like rotations can be handled within the algebra

Table 4 The extended list of the two representations of the conformal geometric entities. The
IPNS representations as described in Table 1 have also an OPNS representation, which are dual to
each other (indicated by the star symbol). In the OPNS representation, the geometric objects are
described with the help of the outer product of conformal points that are part of the objects, for
instance, lines as the outer product of two points and the point at infinity

Entity IPNS representation OPNS representation

Point P D x C 1
2 x2e

1

C e0

Sphere S D P � 1
2 r

2e
1

S� D P1 ^ P2 ^ P3 ^ P4

Plane � D n C de
1

�� D P1 ^ P2 ^ P3 ^ e
1

Circle Z D S1 ^ S2 Z� D P1 ^ P2 ^ P3

Line L D �1 ^ �2 L� D P1 ^ P2 ^ e
1

Point pair Pp D S1 ^ S2 ^ S3 Pp� D P1 ^ P2

algebra. Geometric objects like spheres, planes, circles, and lines can be represented
as vectors and bi-vectors.

Table 4 lists the two representations of the conformal geometric entities. The
inner product null space (IPNS) and the outer product null space (OPNS) [61]
are dual to each other. While Table 2 already presented the IPNS representation
of spheres and planes, they can be described also with the outer product of four
points being part of them. In the case of a plane one of these four points is
the point at infinity e1. Circles can be described with the help of the outer
product of three conformal points lying on the circle or as the intersection of two
spheres.

Lines can be described with the help of the outer product of two points and
the point at infinity e1 or with the help of the outer product of two planes (i.e.,
intersection in IPNS representation). An alternative expression is
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Fig. 20 The line L through
the 3D points a, b and the
visualization of its 6D
Plücker parameters based on
the two 3D vectors u and m
of Eq. (53) m

Ly

Lx

Lz

b u a

L D ue123 C m ^ e1 (52)

with the 3D pseudoscalar e123 D e1 ^ e2 ^ e1, the two 3D points a, b on the line,
u D b � a as 3D direction vector, and m D a � b as the 3D moment vector (relative
to origin). The corresponding six Plücker coordinates (components of u and m) are
(see Fig. 20)

.u W m/ D .u1 W u2 W u3 W m1 W m2 W m3/ (53)

Computational Efficiency of Geometric Algebra Using Gaalop

Because of its generality, Geometric Algebra needs some optimizations for efficient
implementations.

Gaigen [27] is a Geometric Algebra code generator developed at the University of
Amsterdam (see [23, 26]). The philosophy behind Gaigen 2 is based on two ideas:
generative programming and specializing for the structure of Geometric Algebra.
Please find some benchmarks comparing Gaigen 2 with other pure software
solutions as well as comparing five models of 3D Euclidean geometry for a ray-
tracing application in [26, 28].

Gaalop [44] combines the advantages of software optimizations and the adapt-
ability on different parallel platforms. As an example, an inverse kinematics
algorithm of a computer animation application was investigated [42]. With the
optimization approach of Gaalop, the software implementation became three times
faster and with a hardware implementation about 300 times faster [43] (three
times by software optimization and 100 times by additional hardware optimization)
than the conventional software implementation. Figure 21 shows an overview over
the architecture of Gaalop. Its input is a Geometric Algebra algorithm written
in CLUCalc [60], a system for the visual development of Geometric Algebra
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Geometric Algebra algorithm

Symbolic simplification

IR (intermediate representation)

Sequential platforms

C Java ... ...CUDA FPGA

Parallel platforms

Fig. 21 Architecture of Gaalop

algorithms. Via symbolic simplification it is transformed into an intermediate
representation (IR) that can be used for the generation of different output formats.
Gaalop supports sequential platforms with the automatic generation of C and JAVA
code while its main focus is on supporting parallel platforms like reconfigurable
hardware as well as modern accelerating GPUs.

Gaalop uses the symbolic computation functionality of Maple (using the Open
Maple interface and a library for Geometric Algebras [1]) in order to optimize a
Geometric Algebra algorithm. It computes the coefficients of the desired multivector
symbolically, returning an efficient implementation depending just on the input
variables.

As an example, the following CLUCalc code computes the intersection circle C
of two spheres S1 and S2 according to Fig. 17:

P1 = x1*e1 + x2*e2 + x3*e3 + 1/2*(x1*x1+x2*x2+x3*x3)*einf
+ e0; P2 = y1*e1 +

y2*e2 +y3*e3 + 1/2*(y1*y1+y2*y2+y3*y3)*einf + e0;
S1 =P1 - 1/2 * r1*r1 *

einf; S2 = P2 - 1/2 * r2*r2 * einf; ?C = S1 $\wedge$ S2;

See Table 2 for the computation of the conformal points P 1 and P 2, the spheres
S1 and S2, as well as the resulting circle based on the outer product of the two
spheres.

The resulting C code generated by Gaalop for the intersection circle C is as
follows and depends only on the variables x1, x2, x3, y1, y2, y3, r1, and r2 for
the 3D center points and radii:

float C [32] = {\{}0.0{\}}; C[7] = x1*y2-x2*y1;
C[8] = x1*y3-x3*y1; C[9]

= -0.5*y1*x1*x1-0.5*y1*x2*x2 -0.5*y1*x3*x3+0.5*y1*r1*r1 +
0.5*x1*y1*y1+0.5*x1*y2*y2 + 0.5*x1*y3*y3 - 0.5*x1*r2*r2;

C[10] = -y1 +
x1; C[11] = -x3*y2+x2*y3; C[12] = -0.5*y2*x1*x1-0.5*y2*x2*x2-
0.5*y2*x3*x3 + 0.5*y2*r1*r1 + 0.5*x2*y1*y1 + 0.5*x2*y2*y2 +

0.5*x2*y3*y3 -
0.5*x2*r2*r2; C[13] = -y2 + x2; C[14] = -0.5*y3*x1*x1 -

0.5*y3*x2*x2
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-0.5*y3*x3*x3 + 0.5*y3*r1*r1 + 0.5*x3*y1*y1 + 0.5*x3*y2*y2 +
0.5*x3*y3*y3

- 0.5*x3*r2*r2; C[15] = -y3 + x3; C[16] = -0.5*y3*y3 +
0.5*x3*x3 +

0.5*x2*x2 + 0.5*r2*r2 -0.5*y1*y1 - 0.5*y2*y2 + 0.5*x1*x1 -
0.5*r1*r1;

In a nutshell, Gaalop always computes optimized 32-dimensional multivectors.
Since a circle is described with the help of a bi-vector, only the blades 7–16
(see Table 3) are used. As you can see, all the corresponding coefficients of this
multivector are very simple expressions with basic arithmetic operations.

5 Feature-BasedVector Field Visualization

We will identify derived quantities that describe flow features such as vortices
(section “Derived Measures of Vector Fields”) and we discuss the topology of
vector fields (section “Topology of Vector Fields”). However, not all feature-based
visualization approaches can be covered here. The reader is referred to [84] for
further information on this topic. We start with a description of integral curves in
vector fields, which are the basis for most feature-based visualization approaches.

Characteristic Curves of Vector Fields

A curve q W R ! M (see section “Tangential Vectors”) is called a tangent curve of
a vector field v(x), if for all points x 2 q the tangent vector Pq of q coincides with
v.x/. Tangent curves are the solutions of the autonomous ODE system

d

d�
x.�/ D v.x.�// with x.0/ D x0 (54)

For all points x 2 M with v.x/ ¤ 0, there is one and only one tangent curve
through it. Tangent curves do not intersect or join each other. Hence, tangent curves
uniquely describe the directional information and are therefore an important tool for
visualizing vector fields.

The tangent curves of a parameter-independent vector field v(x) are called
streamlines. A streamline describes the path of a massless particle in v.

In a one-parameter-dependent vector field v(x, t), there are four types of
characteristic curves: streamlines, path lines, streak lines, and time lines. To ease the
explanation, we consider v(x, t) as a time-dependent vector field in the following:
in a space-time point (x0, t0) we can start a streamline (staying in time slice t D t0)
by integrating

d

d�
x.�/ D v.x.�/; t0/ with x.0/ D x0 (55)
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or a path line by integrating

d

dt
x.t/ D v.x.t/; t/ with x.t0/ D x0 (56)

Path lines describe the trajectories of massless particles in time-dependent vector
fields. The ODE system (56) can be rewritten as an autonomous system at the
expense of an increase in dimension by one, if time is included as an explicit state
variable:

d

dt

�
x
t

�

D
�

v.x.t/; t/
1

�

with

�
x
t

�

.0/ D
�

x0

t0

�

(57)

In this formulation space and time are dealt with on equal footing – facilitating
the analysis of spatiotemporal features. Path lines of the original vector field v in
ordinary space now appear as tangent curves of the vector field

p.x; t/ D
�

v.x; t/
1

�

(58)

in space-time. To treat streamlines of v, one may simply use

s.x; t/ D
�

v.x; t/
0

�

(59)

Figure 22 illustrates s and p for a simple example vector field v. It is obtained by
a linear interpolation over time of two bilinear vector fields. Figure 22a depicts
streamlines, Fig. 22b depicts pathlines.

A streak line is the connection of all particles set out at different times but
the same point location. In an experiment, one can observe these structures by
constantly releasing dye into the flow from a fixed position. The resulting streak
line consists of all particles which have been at this fixed position sometime in the
past. Considering the vector field p introduced above, streak lines can be obtained in
the following way: apply a stream surface integration in p where the seeding curve
is a straight line segment parallel to the t-axis; a streak line is the intersection of this
stream surface with a hyperplane perpendicular to the t-axis (Fig. 22c).

A time line is the connection of all particles set out at the same time but different
locations, i.e., a line which gets advected by the flow. An analogon in the real world
is a yarn or wire thrown into a river, which gets transported and deformed by the
flow. However, in contrast to the yarn, a time line can get shorter and longer. It can
be obtained by applying a stream surface integration in p starting at a line with t D
{const.} and intersecting it with a hyperplane perpendicular to the t-axis (Fig. 22d).

Streak lines and time lines cannot be described as tangent curves in the
spatiotemporal domain. Both types of lines fail to have a property of stream and
path lines: they are not locally unique, i.e., for a particular location and time there
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v (x, y, t) = (1 – t ) + t

a b c d

Fig. 22 Characteristic curves of a simple 2D time-dependent vector field. Streamlines and path
lines are shown as illuminated field lines. Streak and time lines are shown as thick cylindrical lines,
while their seeding curves and resulting stream surfaces are colored red. The red/green coordinate
axes denote the (x, y)-domain; the blue axis shows time

is more than one streak and time line passing through. However, stream, path, and
streak lines coincide for steady vector fields v(x, t) D v(x, t0) and are described
by (54) in this setting. Time lines do not fit into this.

Derived Measures of Vector Fields

A number of measures can be derived from a vector field v and its derivatives. These
measures indicate certain properties or features and can be helpful when visualizing
flows. The following text assumes the underlying manifoldM where the vector field
is given to be Euclidean space, i.e., the manifold is three-dimensional and Cartesian
coordinates are used where the metric (see section “Tensors”) is representable as the
unit matrix.

The magnitude of v is then given as

jvj D
p

u2 C v2 C w2 (60)

The divergence of a flow field is given as

div.v/ D r � v D trace.J/ D ux C vy C wz (61)

and denotes the gain or loss of mass density at a certain point of the vector field:
given a volume element in a flow, a certain amount of mass is entering and exiting
it. Divergence is the net flux of this at the limit of a point. A flow field with {div}(v)
= 0 is called divergence-free, which is a common case in fluid dynamics since a
number of fluids are incompressible.
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The vorticity or curl of a flow field is given as

! D
0

@

!1

!2

!3

1

A D r � v D
0

@

wy � vz

uz � wx
vx � uy

1

A (62)

This vector is the axis of locally strongest rotation, i.e., it is perpendicular to the
plane in which the locally highest amount of circulation takes place. The vorticity
magnitude j!j gives the strength of rotation and is often used to identify regions of
high vortical activity. A vector field with ! D 0 is called irrotational or curl-free,
with the important subclass of conservative vector fields, i.e., vector fields which are
the gradient of a scalar field. Note that Geometric Algebra (see section “Geometric
Algebra” and Sect. 4) treats Eqs. (61) and (62) as an entity, called the geometric
derivative. The identification of vortices is a major subject in fluid dynamics. The
most widely used quantities for detecting vortices are based on a decomposition of
the Jacobian matrix J D S C˝ into its symmetric part, the strain tensor

S D 1

2
.J C JT / (63)

and its antisymmetric part, the vorticity tensor

	 D 1

2
.J � JT / D

0

@

0 �!3 !2

!3 0 �!1

�!2 !1 0

1

A (64)

with !i being the components of vorticity (62). While ˝ assesses vortical activity,
the strain tensor S measures the amount of stretching and folding which drives
mixing to occur.

Inherent to the decomposition of the flow field gradient J into S and ˝ is the
following duality: vortical activity is high in regions where˝ dominates S, whereas
strain is characterized by S dominating˝ .

In order to identify vortical activity, Jeong et al. used this decomposition in
[47] to derive the vortex region quantity �2 as the second largest eigenvalue of
the symmetric tensor S2 C ˝2. Vortex regions are identified by �2 < 0, whereas
�2 > 0 lacks physical interpretation. �2 does not capture stretching and folding of
fluid particles and hence does not capture the vorticity-strain duality.

The Q-criterion of Hunt [46], also known as the Okubo-Weiss criterion, is
defined by

Q D 1

2
.k ˝ k2 � k S k2/ D k ! k2 �1

2
k S k2 (65)

whereQ is positive and the vorticity magnitude dominates the rate of strain. Hence
it is natural to define vortex regions as regions where Q > 0. Unlike �2, Q has a
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physical meaning also where Q < 0. Here the rate of strain dominates the vorticity
magnitude.

Topology of Vector Fields

In this section we collect the first-order topological properties of steady 2D and 3D
vector fields. The extraction of these topological structures has become a standard
tool in visualization for the feature-based analysis of vector fields.

Critical Points
Considering a steady vector field v(x), an isolated critical point x0 is given by

v.x0/ D 0 with v.x0 ˙ �/ ¤ 0 (66)

This means that v is zero at the critical point but nonzero in a certain neighborhood.
Every critical point can be assigned an index. For a 2D vector field it denotes

the number of counterclockwise revolutions of the vectors of v while traveling
counterclockwise on a closed curve around the critical point (for 2D vector fields,
it is therefore often called the winding number). Similarly, the index of a 3D
critical point measures the number of times the vectors of v cover the area of
an enclosing sphere. The index is always an integer and it may be positive or
negative. For a curve/sphere enclosing an arbitrary part of a vector field, the
index of the enclosed area/volume is the sum of the indices of the enclosed
critical points. Mann et al. show in [54] how to compute the index of a region
using Geometric Algebra. A detailed discussion of index theory can be found in
[25, 31, 32].

Critical points are characterized and classified by the behavior of the tangent
curves around it. Here we concentrate on first-order critical points, i.e., critical
points with det.J.x0// ¤ 0. As shown in [37, 38], a first-order Taylor expansion
of the flow around x0 suffices to completely classify it. This is done by an
eigenvalue/eigenvector analysis of J.x0/. Let �i be the eigenvalues of J.x0/ ordered
according to their real parts, i.e., Re.�i�1/ 	 Re.�i /. Furthermore, let ei be the
corresponding eigenvectors, and let fi be the corresponding eigenvectors of the
transposed Jacobian .J.x0//

T (note that J and JT have the same eigenvalues but
not necessarily the same eigenvectors). The sign of the real part of an eigenvalue
�i denotes – together with the corresponding eigenvector ei – the flow direction:
positive values represent an outflow and negative values an inflow behavior. Based
on this we give the classification of 2D and 3D first-order critical points in the
following.

2D Vector Fields Based on the flow direction, first-order critical points in 2D
vector fields are classified into:
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Saddle point
R1 <0, R2 > 0 R1 , R2 > 0 R1 = R2 > 0 R1 = R2 = 0 R1 = R2 < 0 R1, R2 < 0 

I1 = I2 = 0 I1 = I2 = 0 I1 = –I2 ≠ 0 I1 = –I2 ≠ 0 I1 = –I2 ≠ 0 I1 = I2 = 0 

Repelling node Repelling focus Center Attracting focus Attracting node

Fig. 23 Classification of first-order critical points. R1, R2 denote the real parts of the eigenvalues
of the Jacobian matrix, while I1, I2 denote their imaginary parts (From [37])

Sources W 0 < Re.�1/ 	 Re.�2/

Saddles W Re.�1/ < 0 < Re.�2/

Sinks W Re.�1/ 	 Re.�2/ < 0

Thus, sources and sinks consist of complete outflow/inflow, while saddles have a
mixture of both.

Sources and sinks can be further divided into two stable subclasses by deciding
whether or not imaginary parts are present, i.e., whether or not �1, �2 is a pair of
conjugate complex eigenvalues:

Foci W Im.�1/ D �Im.�2/ ¤ 0
Nodes W Im.�1/ D Im.�2/ D 0

There is another important class of critical points in 2D: a center. Here, we have
a pair of conjugate complex eigenvalues with Re.�1/ D Re.�2/ D 0. This type is
common in incompressible (divergence-free) flows but unstable in general vector
fields since a small perturbation of v changes the center to either a sink or a source.
Figure 23 shows the phase portraits of the different types of first-order critical points
following [37].

The index of a saddle point is �1, while the index of a source, sink, or center
is C1. It turns out that this coincides with the sign of det.J.x0//: a negative
determinant denotes a saddle, a positive determinant a source, sink, or center. This
already shows that the index of a critical point cannot be used to distinguish or
classify them completely, since different types like sources and sinks have assigned
the same index.

An iconic representation is an appropriate visualization for critical points, since
vector fields usually contain a finite number of them. We will display them as
spheres colored according to their classification: sources will be colored in red, sinks
in blue, saddles in yellow, and centers in green.

3D Vector Fields Depending on the sign of Re.�i / we get the following classifica-
tion of first-order critical points in 3D vector fields:
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Fig. 24 Flow behavior around critical points of 3D vector fields and corresponding iconic
representation

Sources W 0 <

Repelling saddles W Re.�1/ < 0 < Re.�2/ 	 Re.�3/

Attracting saddles W Re.�1/ 	 Re.�2/ < 0 < Re.�3/

Sinks W Re.�1/ 	 Re.�2/ 	

Again, sources and sinks consist of complete outflow/inflow, while saddles have
a mixture of both. A repelling saddle has one direction of inflow behavior (called
inflow direction) and a plane in which a 2D outflow behavior occurs (called outflow
plane). Similar to this, an attracting saddle consists of an outflow direction and an
inflow plane.

Each of the four classes above can be further divided into two stable subclasses
by deciding whether or not imaginary parts in two of the eigenvalues are present
(�1; �2; �3 are not ordered):

Foci W Im.�1/ D 0 and Im.�2/ D �Im.�3/ ¤ 0
Nodes W Im.�1/ D Im.�2/ D Im.�3/ D 0

As argued in [29], the index of a first-order critical point is given as the sign of
the product of the eigenvalues of J.x0/. This yields an index of C1 for sources and
attracting saddles and an index of �1 for sinks and repelling saddles.

In order to depict 3D critical points, several icons have been proposed in the
literature; see [30, 36, 37, 53]. Basically, we follow the design approach of [72, 85]
and color the icons depending on the flow behavior: attracting parts (inflow) are
colored blue, while repelling parts (outflow) are colored red (Fig. 24).

Separatrices
Separatrices are streamlines or stream surfaces which separate regions of different
flow behavior. Here we concentrate on separatrices that emanate from critical points.
Due to the homogeneous flow behavior around sources and sinks (either a complete
outflow or inflow), they do not contribute to separatrices. Each saddle point creates
two separatrices: one in forward and one in backward integration into the directions
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Fig. 25 Separatrices are streamlines or surfaces starting from saddle points into the direction of
the eigenvectors

of the eigenvectors. For a 2D saddle point, this gives two separation lines (Fig. 25a).
Considering a repelling saddle xR of a 3D vector field, it creates one separation
curve (which is a streamline starting in xR in the inflow direction by backward
integration) and a separation surface (which is a stream surface starting in the
outflow plane by forward integration). Figure 25b gives an illustration. A similar
statement holds for attracting saddles.

Other kinds of separatrices are possible as well: they can emanate from boundary
switch curves [85] and attachment and detachment lines [48], or they are closed
separatrices without a specific emanating structure [73].

Application
In the following, we exemplify the topological concepts described above by
applying them to a 3D vector field. First, we extract the critical points by searching
for zeros in the vector field. Based on an eigenvalue/eigenvector analysis, we
identify the different types of the critical points. Starting from the saddles, we
integrate the separatrices into the directions of the eigenvectors.

Figure 26 visualizes the electrostatic field around a benzene molecule. This
data set was calculated on a 1013 regular grid using the fractional charges method
described in [70]. It consists of 184 first-order critical points depicted in Fig. 26a.
The separation surfaces shown in Fig. 26b emanate from 78 attracting and 43
repelling saddles. Note how they hide each other as well as the critical points. Even
rendering the surfaces in a semitransparent style does not reduce the visual clutter
to an acceptable degree. This is one of the major challenges for the topological
visualization of 3D vector fields.

Figure 26c shows a possible solution to this problem by showing the 129 saddle
connectors that we found in this data set. Saddle connectors are the intersection
curves of repelling and attracting separation surfaces and have been introduced
to the visualization community in [72]. Despite the fact that saddle connectors
can only indicate the approximate run of the separation surfaces, the resulting
visualization gives more insight into the symmetry and three-dimensionality of the
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Fig. 26 Topological representations of the benzene data set with 184 critical points. (a) Iconic
representation. (b) Due to the shown separation surfaces, the topological skeleton of the vector
field looks visually cluttered. (c) Visualization of the topological skeleton using saddle connectors

data set. Saddle connectors are a useful compromise between the amount of coded
information and the expressiveness of the visualization for complex topological
skeletons.

6 Anisotropic Diffusion PDEs for Image Regularization and
Visualization

Regularization PDEs: A Review

We consider a 2D multivalued image I: ˝ ! R
n.n D 3 for color images) defined

on a domain	 � R
2 and denote by Ii W 	 ! R the scalar channel i of I:

8X D .x; y/ 2 	; I.X/ D .I1.X/ I2.X/ : : : In.X//
T :

Local Multivalued Geometry and Diffusion Tensors
PDE-based regularization can be often seen as the local smoothing of an image
I along defined directions depending themselves on the local configuration of the
pixel intensities, i.e., one wants basically to smooth I in parallel to the image
discontinuities. Naturally, this means that one has first to retrieve the local geometry
of the image I. It consists in the definition of these important features at each image
point X = .x; y/ 2 ˝:

• Two orthogonal directions �.X/C; �.X/� 2 S1 along the local maximum and
minimum variations of image intensities at X. �� is then considered to be parallel
to the local edge, when there is one.

• Two corresponding positive values �.x/C; �.x/� measuring the effective varia-
tions of the image intensities along �.x/C and �.x/�, respectively. ��, �C are
related to the local contrast of an edge.

For scalar images I W 	 ! R, this local geometry {�C=�; �C=�jX 2 ˝} is
usually retrieved by the computation of the smoothed gradient field r I
 D
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rI � G
 where G
 is a 2D Gaussian kernel with standard deviation 
 . Then,
�C Dk rI
 k2 is a possible measure of the local contrast of the contours,
while �� D rI
?= krI
k gives the contours direction. Such a local geometry
{�C=�; �C=�jX 2 ˝} can be represented in a more convenient form by a field
G: ˝ ! P.2/ of second-order tensors (2 � 2 symmetric and semi-positive
matrices):

8X 2 	; G.X/ D �� ����T C �C �C�CT

:

Eigenvalues of G are indeed �� and �C and corresponding eigenvectors are ��
and �C. The local geometry of scalar-valued images I can be then modeled by the
tensor field G.x/ D rI
.x/rI T
.x/.

For multivalued images I W 	 ! R
n, the local geometry can be retrieved in a

similar way, by the computation of the field G of the smoothed structure tensors. As
explained in [22,82], this is a nice extension of the gradient for multivalued images:

8X 2 	; G
.X/ D
�Xn

iD1
rIi˛.X/rI Ti˛.X/

�

�G
 where rIi˛ D
 
@Ii
@x

@Ii
@y

!

�G˛
(67)

G
.x/ is a very good estimator of the local multivalued geometry of I at X: its spectral
elements give at the same time the vector-valued variations (by the eigenvalues
��; �C of G
 ) and the orientations (edges) of the local image structures (by the
eigenvectors ��?�C of G
/; 
 being proportional to the so-called noise scale.

Once the local geometry G
 of I has been determined, the way the regularization
process is achieved is defined by another field T: ˝ ! P.2/ of diffusion tensors,
which specifies the local smoothing geometry that should drive the PDE flow. Of
course, T depends on the targeted application, and most of the time it is constructed
from the local geometry G
 of I. It is thus defined from the spectral elements
��; �C and ��; �C of G
 . In [19, 78], the following expression is proposed for
image regularization:

8X 2 	; T.X/ D f �
.�C;��/

���� C f C
.�C;��/

�C�CT

(68)

where

f �
.�

C

;�
�

/ D 1

.1 C �C C ��/p1
and f C

.�
C

;�
�

/ D 1

.1 C �C C ��/p2
with p1 < p2

are the two functions which set the strengths of the desired smoothing along the
respective directions ��; �C. This latest choice basically says that if a pixel X is
located on an image contour (�C

.x/ is high), the smoothing on X would be performed

mostly along the contour direction ��
.x/ (since f C

.:;:/ � f �
.:;:/). Conversely, if a pixel

X is located on a homogeneous region (�C
.x/ is low), the smoothing on X would be
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performed in all possible directions (isotropic smoothing), since f C
.:;:/ ' f �

.:;:/ (and
then T ' Id ). Predefining the smoothing geometry T of each applied PDE iteration
is the first stage of most of the PDE-based regularization algorithms. Most of the
differences between existing regularization methods (as in [2,3,10,18,19,49,52,58,
59, 67–69]) lie first on the definition of T, but also on the kind of the diffusion PDE
that will be used indeed to perform the desired smoothing.

Divergence-Based PDEs
One of the common choices to smooth a corrupted multivalued image I:	 ! R

n

following a local smoothing geometry T: ˝ ! P.2/ is to use the divergence PDE:

8i D 1; : : : ; n;
@Ii

@t
D div.TrIi / (69)

The general form of this now classical PDE for image regularization has been intro-
duced by Weickert in [82] and adapted for color/multivalued images in [83]. In this
latter case, the tensor field T is chosen the same for all image channels Ii , ensuring
that channels are smoothed with a coherent multivalued geometry which takes the
correlation between channels into account (since T depends on G). Equation (69)
unifies a lot of existing scalar or multivalued regularization approaches and proposes
at the same time two interpretation levels of the regularization process:

• Local interpretation: Equation (69) may be seen as the physical law describing
local diffusion processes of the pixels individually regarded as temperatures or
chemical concentrations in an anisotropic environment which is locally described
by T.

• Global interpretation: The problem of image regularization can be regarded as
the minimization of the energy functional E(I) by a gradient descent (i.e., a
PDE), coming from the Euler-Lagrange equations of E(I) [3, 19, 49, 51, 78]:

E.I/ D
Z

	

 .�C; ��/ d	 where  W R
2 ! R (70)

• It results in a particular case of the PDE (69), with T D @‰
@��

����T C @‰

@�C

�C�CT
,

where �C; �� are the two positive eigenvalues of the non-smoothed structure
tensor field G D P

i rIi rI Ti and �C; �� are the corresponding eigenvectors.

Unfortunately, there are local configurations where the PDE (69) does not fully
respect the geometry T and where the smoothing is performed in unexpected direc-

tions. For instance, considering (69) with tensor fields T1.X/ D
�

rI
krIk

� �
rI

krIk
�T

(purely anisotropic) and T2.x/ D Id (purely isotropic) lead both to the heat
equation @I

@t
D �I which has obviously an isotropic smoothing behavior. Different

tensors fields T with different shapes (isotropic or anisotropic) may define the
same regularization behavior. This is due to the fact that the divergence implicitly
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introduces a dependance on the spatial variations of the tensor field T, so it hampers
the design of a pointwise smoothing behavior.

Trace-Based PDEs
Alternative PDE-based regularization approaches have been proposed in [3, 51,
68, 69, 78] in order to smooth an image directed by a local smoothing geometry.
They are inspirit very similar to the divergence equation (69), but based on a trace
operator:

8i D 1; : : : ; n;
@Ii

@t
D trace .THi / with Hi D

0

@

@2Ii
@x2

@2Ii
@x@y

@2Ii
@x@y

@2Ii
@y2

1

A (71)

Hi stands for the Hessian of Ii . Equation (71) is in fact nothing more than a
tensor-based expression of the PDE @I

@t
D f �

.��;�C/
I���� C f C

.��;�C/
I�C�C

where

I���� D @2I
@��2 . This PDE can be viewed as a simultaneous combination of two

orthogonally oriented and weighted 1D Laplacians. In case of multivalued images,
each channel Ii of I is here also coherently smoothed with the same tensor field
T. As demonstrated in [78], the evolution of Eq. (71) has a geometric meaning in
terms of local linear filtering: it may be seen locally as the application of very small
convolutions around each point X with a Gaussian mask GT

t oriented by the tensor
T.x/:

GT
t .X/ D 1

4�t
exp

�

�XT T�1 X
4t

�

This ensures that the smoothing performed by (71) is indeed oriented along the
predefined smoothing geometry T. As the trace is not a differential operator,
the spatial variation of T does not trouble the diffusion directions here and two
different tensor fields will necessarily lead to different smoothing behaviors. Under
certain conditions, the divergence PDE (69) may be also developed as a trace
formulation (71). But in this case, the tensors inside the trace and the divergence are
not the same [78]. Note that trace-based equations (71) are rather directly connected
to functional minimizations, especially when considering the multivalued case. For
scalar-valued images (n D 1), some correspondences are known anyway [3,19,51].

Curvature-Preserving PDEs
Basically, the divergence and trace Eqs. (69) and (71) locally behave as oriented
Gaussian smoothing whose strengths and orientations are directly related to the
tensors T.x/. But on curved structures (like corners), this behavior is not desirable:
in case of high variations of the edge orientation ��, such a smoothing will tend
to round corners, even by conducting it only along �� (an oriented Gaussian is not
curved by itself). To avoid this over-smoothing effect, regularization PDEs may try
to stop their action on corners (by vanishing tensors T.x/ there, i.e., f � D f C D 0),
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but this implies the detection of curved structures on images that are themselves
noisy or corrupted. This is generally a hard task.

To overcome this problem, curvature-preserving regularization PDEs have been
introduced in [77]. We illustrate the general idea of these equations by considering
the simplest case of image smoothing along a single direction, i.e., a vector field
w W ˝ ! R

2 instead of a tensor-valued one T. The two spatial components of w are
denoted w.x/ D .u.x/v.x//T .

The curvature-preserving regularization PDE that smoothes I along w is defined
as

8i D 1; : : : ; n;
@Ii

@t
D trace

�

wwTHi

�C rI Ti Jww with Jw D
 

@u
@x

@u
@y

@v
@x

@v
@y

!

(72)
where Jw stands for the Jacobian of w. Equation (72) simply adds a term rI Ti Jww
to the corresponding trace-based PDE (71) that would smooth I along w. This
term naturally depends on the variation of the vector field w. Actually, it has been
demonstrated in [77] that Eq. (72) is equivalent to the application of this one-
dimensional PDE flow:

@Ii .C.a//
@t

D @2Ii .C.a//
@a2

with

8

<

:

CX
.0/ D X

@CX
.a/

@a
D w

�

CX
.a/

� (73)

where CX
.a/ is the streamline curve of w, starting from X and parameterized by a 2 R.

Thus, Eq. (73) is nothing more than the one-dimensional heat flow constrained on
the streamline curve C. This is indeed very different from a heat flow oriented by
w, as in the formulation @Ii

@t
D @2Ii

@w2 since the curvatures of the streamline of w are
now implicitly taken into account. In particular, Eq. (73) has the interesting property
to vanish when the image intensities are constant on the streamline CX, whatever
the curvature of CX is. So, defining a field w that is tangent everywhere to the
image structures allows the preservation of these structures during the regularization
process, even if they are curved (such as corners).

Moreover, as Eq. (73) is a 1D heat flow on a streamline CX, its solution at time
dt can be estimated by convolving the image signal lying on the streamline CX by a
1D Gaussian kernel [50]:

8X 2 ˝; IŒdt �.X/ D
Z C1

�1
IŒtD0�

�

CX
.p/

�

Gdt .p/ dp (74)

This formulation is very close to the line integral convolution (LIC) framework [17],
which has been introduced as a visualization technique to render a textured image
representing a 2D vector field w. As we are considering diffusion equations here, the
weighting function in Eq. (74) is naturally Gaussian. This geometric interpretation
particularly allows to implement curvature-preserving PDEs (74) using Runge-
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a>0

a=0x

a<0

a b

Fig. 27 Streamline CX of various vector fields w:˝ ! R
2. (a) Streamline of a general field w.

(b) Example of streamlines when w is the lowest eigenvector of the smoothed structure tensor G


(one block is one color pixel)

Kutta estimations of the streamline geometries, leading to sub-pixel precision of
the smoothing process.

This single-direction smoothing PDE (72) can be easily extended to deal with
a tensor-valued geometry T: ˝ ! P.2/, in order to be able to represent both
anisotropic or isotropic regularization behaviors. This is done by decomposing
the tensor field T as the sum of several single-directional tensors, i.e., T D
2
�

R �

˛D0

�p
Ta˛

� �p
Ta˛

�T

d˛, where a˛ D cos˛ sin˛T . This naturally suggests

to decompose a tensor-driven regularization process into a sum of single-direction
smoothing processes, each of them being expressed as a curvature-preserving PDE.
As a result, the corresponding curvature-preserving PDE directed by a tensor field
T is

8i D 1; : : : ; n;
@Ii

@t
D trace.THi /C 2

�
rI Ti

Z �

˛D0
Jp

Taa

p
Taa d˛ (75)

When T is locally isotropic (on homogeneous region), Eq. (75) is similar to a 2D
heat flow, while when T is locally anistropic (on an image contour), it behaves as a
1D heat flow on the streamline curve following the contour path, thus taking care of
its curvature (Fig. 27).

Applications

Some application results are presented here, mainly based on the use of the
curvature-preserving PDEs (75). A specific diffusion tensor field T has been used to
adapt the smoothing behavior to each targeted application.
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Noisy color image (left), denoised image (right) by
curvature-preserving PDE (50.75)

Image of a fingerprint After several iterations
of trace-based PDE (50.71)

After several iterations of
curvature-preserving PDE
(50.75) (with same tensor
field T)

Fig. 28 Using PDE-based smoothing to regularize color and grayscale images
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Original color image (left), reconstructed using PDE (50.75) (right)
(the in painting mask covers the cage)

Original color image (left), image with 50% pixel removed (middle), reconstructed
using PDE (50.75) (right)

Fig. 29 Image inpainting using PDE-based regularization techniques

Color Image Denoising
Image denoising is a direct application of regularization methods. Sensor inaccura-
cies, digital quantifications, or compression artifacts are indeed some of the various
noise sources that can affect a digital image, and suppressing them is a desirable
goal. Figure 28 illustrates how curvature-preserving PDEs (75) can be successfully
applied to remove such noise artifacts while preserving the thin structures of the
processed images. The tensor field T is chosen as in Eq. (68).

Color Image Inpainting
Image inpainting consists in filling in missing (user-defined) image regions by
guessing pixel values such that the reconstructed image still looks natural. Basically,
the user provides one color image I W ˝ ! R

3 and one mask imageM :˝ ! f0; 1g.
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The inpainting algorithm must fill in the regions where M.X/ D 1, by means of
some intelligent interpolations. Image inpainting using diffusion PDEs has been
proposed, for instance, in [10, 18, 78]. Inpainting is a direct application of our
proposed curvature-preserving PDE (75), where the diffusion equation is applied
only on the regions to inpaint, allowing the neighbor pixels to diffuse inside these
regions in an anisotropic way (Fig. 29).

Visualization of Vector and Tensor Fields
Regularization PDEs such as (69), (71), and (75) can be also used to visualize
a vector field w W ˝ ! R

2 or a tensor field G: ˝ ! P.2/; see also Sect. 5.
The idea is to smooth an originally pure noisy image using a diffusion tensor
field T which is chosen to be T D wwT or T D G or other variations as long
as the smoothing geometry is indeed directed by the field we want to visualize.
Whereas the PDE evolution time t goes by, more global structures of the considered
fields appear, i.e., a visualization scale-space is constructed. The same PDE-based
visualization technique allows to display interesting global rendering of DT-MRI
volumes (medical imaging) displaying “stuffed” views of the fiber map (Fig. 30).

7 Conclusion

This chapter presented a selection of possible approaches for systematic treatment of
multidimensional data sets and algorithms based on differential methods. Such data
sets may be the result of some image processing, for instance, a three-dimensional
stack of CT slices in medical imaging used to extract a triangular surface represent-
ing bones. Visual data analysis is particularly important for big data. Many such
data sources originate in computational sciences, produced by algorithms based
on differential methods. Utilizing the same concepts for image processing and
multidimensional data in general allows generalization of methods and increased
software reusability and applicability. Section 2 reviews a mathematically founded
model to structure multidimensional data covering a wide category of data types.
Since there is no commonly agreed standard in the scientific community on how to
lay out multidimensional data for computational purposes, a multitude of alternative
models exist. For a specific application, it is subject of investigation whether some
specific model would fit all the respective requirements. Section 3 delves deeper
into the modeling of mathematical operators using computational data structures. A
mathematical algorithm must be cast into a discretized form in order to be applicable
in a numerical code. Differential forms are a mathematical abstraction allowing
coordinate-free formulations of partial differential equations, which are the basis
of many physical and engineering methods, as well as image processing. Geometric
Algebra, reviewed in Sect. 4, extends the notions of the commonly known vector
algebra to form a full system of algebraic operations to include (among others)
the notion of “dividing vectors.” While unfamiliar at first, the result is a visually
intuitive way to phrase complex algebraic operations, enabling better insight and
more efficient implementation as compared to “ad hoc” approaches. An important
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Vector field visualization
with arrows

Visualization using PDE
(50.75) (after 5 iter)

Visualization using PDE
(50.75) (after 15 iter)

Tensor field rendered using a PDE approach
(50.75)

Tensor field displayed with ellipsoids
(left ) and tracked fibers (right )

Fig. 30 Visualization of vector and tensor fields using PDEs

application of differential methods for multidimensional data is the investigation of
features in vector fields. While primarily of interest to computational sciences such
as computational fluid dynamics, identifying topological features in vector fields
may well apply to color images with RGB channels and gradients of grayscale
images or even more to stacks of images such as three-dimensional data and
animation sequences. Section 5 presents some basics for feature detections in such
data sets. While the application to animation sequences is beyond the scope of
this chapter, utilizing the topological skeleton of some data set may well have
potential for data compression or automatizing algorithms for motion pictures.
Partial differential equations (PDEs) furthermore allow for direct improvement of
image quality and feature reconstruction, as explained in the algorithms presented
in Sect. 6. PDEs describing diffusion are particularly suitable for reducing noise in
images, recovering lost features, as well as the direct visualization of vector and
tensor fields. The set of presented algorithms in this chapter is still subject of active
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research and neither a comprehensive nor the only reasonable approach; rather, the
various aspects covered provide inspirations covering many scientific disciplines
under one hood.

Cross-References

�Tomography
�Mathematical Methods in PET and SPECT Imaging
�Mathematics of Electron Tomography
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