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Figure 1: Visualization of the initial positions (blue curves) of inertial particle trajectories (green curves) that lead to the same location (small
white sphere). At this location, a glyph is placed that depicts the velocities (orange curves), with which the inertial particles arrive. We solve
the source inversion problem for left: TREFOIL and right: WALL-MOUNTED CYLINDER.

Abstract
Inertial particles are finite-sized objects traveling with a certain velocity that differs from the underlying carrying flow, i.e., they
are mass-dependent and subject to inertia. Their backward integration is in practice infeasible, since a slight change in the initial
velocity causes extreme changes in the recovered position. Thus, if an inertial particle is observed, it is difficult to recover where
it came from. This is known as the source inversion problem, which has many practical applications in recovering the source of
airborne or waterborne pollutions. Inertial trajectories live in a higher dimensional spatio-velocity space. In this paper, we show
that this space is only sparsely populated. Assuming that inertial particles are released with a given initial velocity (e.g., from
rest), particles may reach a certain location only with a limited set of possible velocities. In fact, with increasing integration
duration and dependent on the particle response time, inertial particles converge to a terminal velocity. We show that the set of
initial positions that lead to the same location form a curve. We extract these curves by devising a derived vector field in which
they appear as tangent curves. Most importantly, the derived vector field only involves forward integrated flow map gradients,
which are much more stable to compute than backward trajectories. After extraction, we interactively visualize the curves in the
domain and display the reached velocities using glyphs. In addition, we encode the rate of change of the terminal velocity along
the curves, which gives a notion for the convergence to the terminal velocity. With this, we present the first solution to the source
inversion problem that considers actual inertial trajectories. We apply the method to steady and unsteady flows in both 2D and
3D domains.

This is the authors preprint. The definitive version is available at http://diglib.eg.org/ and http://onlinelibrary.wiley.com/.

1. Introduction

The study of inertial particles is an emerging field in flow visual-
ization. Traditional flow visualization considers the trajectories of
massless particles. However, many engineering problems require
the observation of finite-sized objects immersed in the flow, so-

called inertial particles. Examples are found in sand saltation mod-
eling [SL99], soiling of cars [RSBE01], visual obscuration in heli-
copter landing maneuvers [KGRK14], formation of rain [Bor11],
jellyfish feeding [PD09], plant spores and pathogens carried by at-
mospheric flow [BH02] and observations of charged particles in
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magnetic fields [BZ89]. A particular application is the so-called
source inversion problem, which arises in the source recovery of air-
borne or waterborne pollutions based on the observation of dispersed
pollutants. While these are typically modeled along with diffusion
processes as in Akçelik et al. [ABG∗03], Boano et al. [BRR05], El
Badia et al. [BHDH05] or Chow et al. [CKC08], the source inver-
sion problem is non-trivial even when diffusion is neglected. With
this simplification, a solution to the source inversion problem could
only be approximated [HS08], and it was not possible to recover the
initial velocity with which the pollutant entered the flow.

Since inertial particle motion is governed by an ODE, inertial tra-
jectories can be computed as tangent curves of a higher dimensional
vector field [GT14, GT15]. Yet still, source inversion is difficult, be-
cause backward integration is problematic in practice, even though
it is theoretically well-defined [HS08, GT16]. Given an observation
from which a backward integration is started, the recovered initial
position and velocity of the inertial particle heavily depend on the
observed velocity that we started with. In fact, a slight change leads
to a completely different initial position, and most often the recov-
ered initial velocity is extremely high and therefore implausible.
Exploring different observed velocities until a plausible source is
recovered is therefore a very tedious and impractical task. Instead
of prescribing the observed position x and the observed velocity v,
the idea of our approach is to prescribe the observed position and
an initial velocity v0: we assume that particles can start from any
spatial location but with a fixed initial velocity v0. Such assumption
is justified, for instance, when the pollutant is released from rest.

We formulate the following two problems to solve in this paper:

1. Given an observation point x, from which points c in the spatial
domain will an inertial particle integration with initial velocity
v0 starting at t pass through x after finite integration time τ?

2. With which velocities v can such particle pass through x?

We show that for both problems the solutions are one-parametric sets
of points (Problem 1) or vectors (Problem 2). In fact, we show that all
solutions of Problem 1 form a parametric curve c(τ), which we call
the influence curve. It is the collection of all points c in the spatial
domain that have influence on x in the sense that inertial particles
starting from c pass through x. The main theoretical contribution
of this paper is to show that all influence curves can be described
as pathlines of one time-dependent vector field h(x, t), i.e., they
can be extracted by a simple massless integration. Furthermore, the
computation of h is based on forward integrated inertial particle
trajectories only. Therefore, the computation is much more stable
than a direct backward integration.

The solution of Problem 2 is also a one-parametric family of
vectors v(τ). This means that for a given observation point x, inertial
particles passing through it can have only “a few” possible velocities.

For the visualization, we systematically place observation points
in the spatial domain and prescribe a user-defined initial velocity.
After extraction, we interactively visualize the influence curves and
display the velocities observed at the observation points using glyphs.
As inertial particle trajectories converge to attracting manifolds in
the spatio-velocity domain [MBZ06, HS08], we additionally encode
the rate of change of the observed velocity along the influence
curves, which gives a notion for the convergence to the terminal

velocity in the attracting manifold. With this, we present the first
solution to the source inversion problem that considers actual inertial
trajectories. Our method provides the means to integrate inertial
particles “backward”, which enables a number of flow visualization
and analysis methods that have previously been unaccessable for
inertial particles. We demonstrate influence curves in a number of
steady and unsteady flows in both 2D and 3D domains.

2. Background and Related Work

In this section, we briefly summarize the modeling of inertial par-
ticles and recent approaches to backward integration and source
inversion. We end on a general summary of inertial particle research
in visualization.

2.1. Modeling of Inertial Flow

Inertial particles are finite-sized objects that are carried by a fluid
flow. In contrast to massless tracer particles, inertial particles have
a certain density and diameter, and are thus subject to inertia. A
number of forces act on them, including the force exerted by the
flow itself, buoyancy, Stokes drag, the force exerted due to the mass
of the fluid moving with the particle and the Basset-Boussinesq
memory term, cf. Haller and Sapsis [HS08]. The Maxey-Riley equa-
tions [MR83] describe the full set of forces for spherical rigid par-
ticles. We refer to Farazmand and Haller [FH15] for a study of
the properties of their solution and a summary of recent work on
improvements of the model.

In many applications, several of the aforementioned forces are
small enough to be neglected and thus, dependent on the application,
several assumptions can be made. In the remainder of this paper,
we follow the model described by Crowe et al. [CST98], i.e., we
assume that particles are very small and that the density of the
surrounding air is far smaller than the density of each particle. The
model further neglects particle-particle interactions and assumes
that the particles have no influence on the underlying flow, i.e.,
we assume one-way coupling. These assumptions are common in
practice [SGL10, PSGC11, KGRK14, CGP∗10, BBC∗09, BBC∗11]
and lead to a simplified set of equations of motion.

Under these assumptions, Günther et al. [GT14, GT15] described
the trajectories of inertial particles as tangent curves of a high-
dimensional vector field, which models both the rate of change of
particle position x and particle velocity v. For an unsteady underly-
ing flow u(x, t) in n-D with n = {2,3}, the autonomous governing
m-D vector field, with m = 2n+1, becomes:

p̂ =
d
dt

x
v
t

=

 v
u(x, t)−v

r +g
1

 with

x
v
t

(0) =

x0
v0
t0

 (1)

where g is a gravity vector (if not mentioned otherwise we set g = 0),
and x0, v0 and t0 are the initial particle position, velocity and time.
The response time r is characterized by particle diameter dp and
particle density ρp, as well as viscosity µ of the surrounding fluid:

r =
d2

p ρp

18µ
> 0 (2)

Figuratively spoken, the response time is the time required for a
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particle released from rest in a gravity-free environment to acquire
63% of the velocity of the carrying fluid, cf. [CST98]. Throughout
the paper, we set as particle density ρp the density of dry sand,
i.e., ρp = 1600kg/m3. The diameter dp was set to dp = 300µm
if not mentioned otherwise. Note that these equations of motion
hold for dp� ηk, with ηk being the Kolmogorov length scale. The
surrounding medium was assumed to be air, thus the viscosity was
set to µ = 1.532·10−5 kg/(m·s). Given these parameters, r is in our
experiments in the range r ∈ [0.058, 0.928].

In [GKKT13], an inertial n-D flow map φ was introduced that
maps a given initial condition (position, time, velocity) to the
reached spatial location after integration. In this paper, we require
flow map derivatives of the full inertial phase space, thus we consider
the full m-D flow map of p̂ as

φ̂(x,v, t,τ) =

φ(x,v, t,τ)
ψ(x,v, t,τ)

t + τ

 (3)

where φ denotes the location and ψ the velocity of an inertial particle
after integration duration τ when starting the integration at location
x at time t with initial velocity v. The gradient of φ̂ is a m×m matrix

∇φ̂(x,v, t,τ) =

φx(x,v, t,τ) φv(x,v, t,τ) φt(x,v, t,τ)
ψx(x,v, t,τ) ψv(x,v, t,τ) ψt(x,v, t,τ)

0T
n 0T

n 1

 (4)

where φx, φv, ψx, ψv are n×n matrices describing the partial deriva-
tives of φ̂ with respect to x, v, and φt , ψt being the start time partials.

2.2. Backward Integration and Source Inversion

In vector field p̂, inertial particles can be integrated forward and
backward in time. Backward integration, however, is problematic
in practice. The recovered initial position and initial velocity are
very sensitive to small changes of the observed velocity with which
the backward integration was started. Fig. 2 illustrates the problem.
Most often, the recovered initial velocity quickly becomes extremely
high and therefore implausible. Closer observation of the topology
of p̂ provides an explanation. As shown in [GT16], repelling criti-
cal points cannot exist in p̂. Thus during backward integration in
the spatio-velocity phase space, an inertial particle is always sub-
ject to repelling behavior, as there are no attractors. Mograbi et
al. [MBZ06] and Haller and Sapsis [HS08] explained that inertial
particles converge during forward integration toward attracting man-
ifolds in the spatio-velocity domain. Therefore, they are expected to
repel away from them during backward integration [HS08].

The lack of a robust backward integration makes the source in-
version problem challenging, which can be formulated as follows:
Given an observed airborne or waterborne dispersed pollutant, com-
pute the source of the pollution. Typically, the transport involves
a diffusion process [ABG∗03, BRR05, BHDH05, CKC08], though
even without it, source inversion is non-trivial. For this simplified
case, Haller and Sapsis [HS08] provide an approximate solution.
Based on the observation that inertial particles are attracted to-
ward manifolds in the spatio-velocity domain, they derived an ODE
named inertial equation, which allows to move robustly on such an
attracting manifold in both forward and backward direction. While
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(a) Inertial backward integration ex-
hibits strong repelling behavior.
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(b) Our influence curves avoid this
problem.

Figure 2: Source inversion in left half of DOUBLE GYRE for τ = 9
in (a): Starting from a source, forward integration takes an inertial
particle to an observation. A backward integration, however, repels
and does not reach the source (forward and backward curves are for
numerical reasons not identical). Slight variations of the observation
(in the order of 10−8) lead to sooner repelling behavior. Backward
integrated curves exhibit extreme velocities (particles exit the do-
main on rather straight tracks) and are therefore implausible. In (b),
our influence curve connects all locations that lead during forward
integration to the observation, which allows to recover the source.

this is a strong theoretical finding, there are three problems with
this approach when applied to source inversion. First, the inertial
equation lives in the spatial domain and thus it cannot recover the
initial velocity with which the pollutant entered the flow. Second,
for larger particles, instabilities occur [SH09] that drive inertial
particles away from the attracting manifold on which the inertial
equation is valid. For their particle model, Sapsis and Haller [SH09]
derived a threshold that characterizes when this happens, which they
applied in [SPH11]. Third, the inertial equation operates on the limit
assumption that particles have reached the manifold. The method
does not consider the accumulating inertia effects of actual inertial
trajectories and it was shown by [GT16] that backward integration
in the inertial equation cannot find topological structures such as
separatrices of actual inertial trajectories.

In this paper, we solve the source inversion problem by consid-
ering actual inertial trajectories and we require forward integration
only. For this, we describe possible sources as tangent curves of a
derived vector field, yielding so-called influence curves. Modeling
topological features or integral curves as tangent curves of possibly
higher dimensional vector fields is a common approach in flow visu-
alization. Streaklines [WT10] and timelines [WHT12] for instance
have been modeled as tangent curves, same as the paths of critical
points [TS03] or vortex corelines [WTGP11].

A problem related to source inversion is the computation of visi-
tation maps. A visitation map determines for a given initial position
the visitation frequency of all locations that may be reached in an
uncertain flow. Bürger et al. [BFM∗12] computed instant visitation
maps by a Monte Carlo simulation that traces massive particle sets.
Monte Carlo particle tracing could be applied to the source inver-
sion problem as well by releasing particles from all locations in
the domain and testing, which of them reach the observation point.
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This, however, is very costly and does not provide a parametric
description of the locations that reach the observation point.

2.3. Inertial Particles in Visualization

In the visualization community, Roettger et al. [RSBE01] simulated
the soiling of cars and visualized particle concentration via heat
maps. Based on the definition of an inertial flow map, Günther et
al. [GKKT13] defined inertial integral curves and performed sand
particle simulations around a helicopter in forward flight close to the
ground. Günther and Theisel [GT14] extracted vortex corelines of
inertial particles by applying techniques that were originally devised
for traditional massless flow to the m-D vector field that governs the
inertial motion. They formulated vortex extraction as an n-D paral-
lel vectors problem. Later, they studied the finite-time separation
behavior of differently-sized inertial particles [GT15]. They defined
a separation measure, provided overview visualizations, visualized
the separation in the space-time domain and used a coordinated plot
to depict the temporal evolution of mass-induced particle separa-
tion. More recently, [GT16] conducted a full classification of the
first-order critical points of the flow p̂ that governs inertial particle
motion in the 2D steady case. Further, they devised an interactive
glyph-based visualization that depicts the asymptotic behavior of
inertial particles for varying initial positions and/or velocities.

3. Influence Curves

In the following, we define influence curves, describe a method to
their efficient extraction and propose a visualization that depicts
both the curves and the observable velocities.

3.1. Definition

We introduce the concept of the influence curve of an observation
point x as a curve containing all points from which inertial inte-
gration with initial velocity v0 and start time t0 ends in x after a
certain integration duration τ. That is, we prescribe the observed
location and the initial velocity. If not mentioned otherwise we set
v0 = 0. We define all influence curves as a family of parametric
curves c(x,τ) so that

φ(c(x,τ),v0, t0,τ) = x (5)

for all x, curve parameterization τ and the family parameters v0, t0.
Given a curve c, we can compute the observable velocity of particles
arriving at x as ψ(c(x,τ), v0, t0, τ) for any integration duration τ.
Fig. 3 illustrates influence curves.

3.2. Extraction

The family of all influence curves can be characterized as pathlines
of an n dimensional unsteady vector field h(x, t), starting at t = t0:

d c
d τ

= h(c(x,τ), t0 + τ). (6)

Fortunately, vector field h has a simple form:

h(x, t) =− φx
−1
[

φv

(
u(x, t0)−v0

r
+g
)
+φt

]
−v0 (7)

inertial pathlines with start time t0
and duration τ

(c(x,τ),v0, t0)

observed velocities

influence curve c(x,τ)

x

(φ,ψ, t0 + τ)

observed position

possible sources
for varying τ

Figure 3: Given an observation x, the influence curve (blue) is the
union of all locations that lead an inertial pathline (green) to the
observation x. The velocity of arriving particles (orange) is shown
in a glyph at x. The glyph design is described later in Section 3.3.

where φx = φx(x,v0, t0, t − t0), φv = φv(x,v0, t0, t − t0) and φt =
φt(x,v0, t0, t− t0) are inertial flow map derivatives that can be com-
puted by forward integration, cf. Eq. (4). Note that Eq. (7) is the
main theoretical contribution of this paper. We refer to the appendix
for a derivation of Eq. (7). With this, influence curves can be ex-
tracted via pathline integration in h.

The definition of h raises another question: How far can we
integrate forward in h? Integration in h stops, when inertial flow
maps or the influence curve itself leaves the domain or when the
influence curve enters a critical point in h. The latter is only expected
for steady underlying flows u. Consider a steady 2D center u(x,y) =
(−y,x)T as shown in Fig. 4. While massless particles perfectly
follow the circular motion, inertial particles spiral outward due
to inertia. In fact, inertial particles that move for a longer period of
time will be carried further outward. Consequently, influence curves
must spiral inward, since all inertial particles released from the
influence curve must reach the same observation point. Eventually,
influence curves converge toward a critical point of h. An example
of this behavior in 3D is shown later in a steady flow in Fig. 12.

3.3. Visualization

For computing an influence curve via pathline integration in Eq. (7),
we have to specify an observation point in the spatial domain from
which the integration in h starts. In our visualizations, we systemati-
cally place the observation points and compute their corresponding

(a) LIC of u(x,y) = (−y,x)T. (b) Influence curves in a center.

Figure 4: Inertial particles in a center flow, showing influence curves
(blue), inertial pathlines (green, seeded from selected curve), as well
as velocity glyphs (see Section 3.3).
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influence curves. In 2D, the observation points are laid out in a
hexagonal pattern in order to achieve the densest possible packing.
In 3D, we decided to place them in a regular grid layout, as this
makes the placement of axis-aligned clip planes easier.

We visualize the influence curves in the spatial domain (in blue)
for a certain time range [0, τ], which is reported later in Table 1 for
all figures. Additionally, we place a glyph at each observation point
to depict the velocities with which the particles arrive (in orange).
The glyphs have a circle shape in 2D and a sphere shape in 3D. They
visualize the observed velocities in polar coordinates, with ψ = 0
being in the center and up to a certain user-specified upper velocity
magnitude vmax at the boundary of the circle/sphere. The velocity
of an arriving inertial particle is a point in the glyph and the union
of velocities of all arriving particles forms a curve. The 2D case
has similarities with the glyph designed in [GT16], though with the
difference that our glyph encodes the observed velocity, whereas
in [GT16] it depicts the initial velocity. In the 3D case, we cull the
front faces of the spheres to allow looking inside them.

For both the influence curve in the spatial domain and the corre-
sponding observed velocities in the glyph, we encode the change
of the observed velocity with respect to the curve parameter. In
particular, we map 1/(1+∂ψ/∂τ) to line width and brightness. The
change in the observed velocity gives a notion for the convergence
of the particle velocity to the terminal velocity. The thicker and
darker a curve segment the more likely has the observed velocity
converged to the terminal velocity, since over time convergence gets
slower. Note that this is only meant to give a notion for the conver-
gence. Inertial particles may shortly be driven away from attracting
(spatio-velocity) manifolds [SH09].

We allow the user to select a glyph by picking. For the selected
glyph, we release a user-specified number of inertial pathlines (in
green) from the selected influence curve. Then, all trajectories have
in common that they reach the observation point. This pathline
depiction is related to the eyelet particle tracing of Wiebel and
Scheuermann [WS05], as they displayed pathlines that pass through
a single point at different times for massless flows in order to capture
the unsteady behavior of a time-dependent flow in a single steady
image. In some cases, influence curves may clutter the view, espe-
cially in unsteady or in 3D flows. Thus, we allow the user to either
show the influence curve of the selected glyph only (Fig. 8, left) or
of all glyphs (Fig. 8, right).

4. Implementation

In the following, we share insights and observations we made about
the numerical integration of the influence curves. Fig. 5 gives an ex-
ample of the influence curve vector field in the DOUBLE GYRE, pre-
computed at 256×128×128 in 100 minutes. In this flow, (massless)
tracer particles stay inside the domain; inertial particles, however,
do not. Due to inertia they might be dragged outside, depending on
the particle response time, i.e., diameter, density and viscosity. This
means, flow maps might leave the domain, and thus the influence
curve field might not be defined at those places. Undefined areas are
shown in Fig. 5 in black. Thus in these areas, influence curve inte-
gration stops and no further sources can be found. Also, influence
curves themselves might leave the domain. We further elaborate on
source inversion in bounded domains in Section 6.2.

x

y

t

|h| : 0 50

t = 10

t = 5

t = 2

Figure 5: Influence curve vector field h(x,y, t) in the DOUBLE GYRE.
Left: Space-time visualization of the influence curve vector field,
containing several pathlines (i.e., influence curves). Right: Selected
LIC slices, showing areas where h is undefined, since particles left
the domain (black) and where the magnitude is high (red).

Another observation we made is that even though the DOUBLE

GYRE flow has a rather moderate variation in the velocity magni-
tude, the influence curve field might have places with extremely high
magnitude (variation of up to factor 3000). Fig. 5 (right) visualizes
the magnitude by color-coding. In this example, high magnitudes
occurred at later integration times (τ > 9) close to the domain bound-
ary, which causes numerical difficulties. We found that an adaptive
integrator is mandatory in order to integrate through these areas.
Thus, the influence curve integration in h is done using the adaptive
Runge-Kutta-Fehlberg method (RK45).

If the domain should be densely covered with influence curves,
the vector field h can be precomputed similar to [WT10]. If only
few influence curves are shown, like in our glyph examples, a pre-
computation of h for all space-time locations does not pay off.

5. Results

We applied our method to a number of data sets. Note that some of
them were studied in related CFD literature [HS08,SPH11]) and that
the remaining examples mainly serve as synthetic testing ground for
source inversion problems. In all flows, the spatial units are assumed
to be in meters and time in seconds. The visualization parameters
(vmax, t0 and τ) are given for all figures later in Table 1.

5.1. Trefoil

Our first data set is courtesy of Candelaresi and Brandenburg [CB11]
who simulated the decay of magnetic rings. In Fig. 6, we selected one
particular 2D slice (steady, with velocity vectors projected into the
2D slice plane) and computed the influence curves for particles with
different diameters. In this example, we make several observations
that are in accordance with the expected behavior. First, we see that
the smaller the particles are, the faster they align with the flow. This
can be seen by the thickness and color of the lines, which represents
the rate of change in the final velocity. Small particles converge
to the terminal velocity faster, which is visible by the “drop shape”
of the orange curves in the velocity domain, see Fig. 7. For small
particles, the orange lines begin very thin and have a noticeable blob
at the end, which represents the near-terminal velocity that almost
all incoming inertial particles have reached. Further, we see that
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(a) dp = 200µm (b) dp = 300µm (c) dp = 400µm

Figure 6: Visualization of all locations (blue curves) that reach the observation points (centers of gray circles). Here, we show the impact of
particle size dp in the TREFOIL 2D data set, together with inertial pathlines (green curves) for a selected glyph.

dp = 100µm dp = 200µm dp = 300µm dp = 400µm

Figure 7: Typically, the observed velocities (orange) are distributed
in a characteristic drop shape inside the glyphs. The orange line
is parameterized by τ as well. The end of the line is thicker and
represents the terminal velocity to which inertial particles converge.

inertia effects get stronger the larger the particles are, as inertial
pathlines (green) deviate stronger from the influence curve (blue).
This is expected, since larger particles have a higher response time,
thus they take longer to respond to changes in the underlying flow.

In Fig. 8, we applied our method to the same data set in the
original 3D domain. In the right image, patterns of coherent behavior
emerge, which relate to the underlying magnetic ring structures.
However, line depictions can get cluttered, thus we display in the
left image only a selected influence curve. Fig. 1 (left) contains a
detail view on one of the glyphs.

5.2. Forced-Damped Duffing

The FORCED-DAMPED DUFFING oscillator is a dynamical system
that exhibits chaotic behavior. Its phase space has previously been
used as a synthetic testing ground for observations of inertial particle
dynamics in [HS11, GT15]. The phase space can be described and
visualized as an unsteady 2D vector field of the form:

u(x, y, t) =
(

y
x− x3−0.25y+0.4 cos t

)
(8)

here, in the spatial domain D = [−2, 2]2. Fig. 9 depicts influence
curves for particles of different size and with varying gravity for the
steady slice t = 0. It can be seen that influence curves of smaller
particles are longer than those of bigger particles. This is due to the

Figure 8: A dense sampling of a 3D domain, such as in the TRE-
FOIL flow, might lead to cluttered influence curves. Left: only one
influence curve is shown, right: all are shown.

smaller response time of small particles. All particles were released
from rest and due to its larger response time, a large particle takes
longer to accelerate and thus travels in the same time a shorter
distance, compared to a smaller particle. Increasing gravity affects
the course of inertial particles and thereby the influence curves.

5.3. Double Gyre

The DOUBLE GYRE [SLM05] is a well-known, periodic time-
dependent 2D vector field. It is defined in the domain D× T =
[0, 2]× [0, 1]× [0, 10] as:

u(x, y, t) =
(

−0.1π sin( f (x, t)π) cos(yπ)

0.1π cos( f (x, t)π) sin(yπ) d
dx f (x, t)

)
(9)

with f (x, t) = a(t)x2 +b(t)x, and a(t) = 0.25sin(t π/5) and b(t) =
1−0.5sin(t π/5). In Fig. 10, we extracted influence curves for dif-
ferent initial velocities. It can be seen that for v0 6= 0, the orange
line in the velocity glyph (depicting the observed velocities) does
not start at the glyph center. The impact of the initial velocity on the
particle trajectories can be seen by the green inertial pathlines.
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(a) dp = 200µm, g = 0 (b) dp = 400µm, g = 0 (c) dp = 400µm, g = (0,−0.5)T

Figure 9: Influence curves in the phase space of the FORCED-DAMPED DUFFING oscillator for different particle sizes dp and gravity g. The
larger the particles, the slower their response to changes in the underlying flow. Thus, they take longer to accelerate and as shown by the orange
curves (observed velocity), they enter the observation points with less speed than the smaller particles. With increased gravity (downward),
influence curves bend upward to accommodate the downward motion of inertial particles.

Figure 10: Influence curves for different initial velocities in the DOUBLE GYRE. Left: v0 = (0,0)T, right: v0 = (0,0.15)T. When inertial
particles are not released from rest (right image), orange curves (observed velocities) no longer start at the glyph center.

Figure 11: Influence curves in a steady TORNADO flow.

5.4. Tornado

Fig. 11 depicts a synthetic TORNADO data set from two different
viewpoints. In 3D domains, glyphs occlude each other. Therefore,
we allow the user to place clip planes in order to explore inner
structures. In this example, we clipped away some of the glyphs
to get a better view. The underlying flow has a relatively simple

Figure 12: Influence curves in a symmetric RAYLEIGH-BÉNARD

convection are separated into convection cells.

structure that is visible in the influence curves (blue) and their
observed velocities (orange).

5.5. Rayleigh-Bénard

Fig. 12 shows a steady RAYLEIGH-BÉNARD convection, i.e., a
thin layer of liquid that is heated from below. In this flow, separate
convection cells are formed that rotate. Our visualization captures
the symmetry of the domain and it can be seen that at least for the
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Figure 13: Influence curves (blue) in the unsteady wake of the 3D
SQUARE CYLINDER sequence.

chosen observation points, influence curves are separated into the
left and right halve of the domain. With ongoing influence curve
integration, the curves reach critical points in h, which are here
inside the left-most and right-most convection cells.

5.6. Square Cylinder

The SQUARE CYLINDER flow [CSBI05] is a Navier-Stokes sim-
ulation of the 3D time-dependent flow around an obstacle. The
uniformly resampled version of this vector field sequence was pro-
vided by Tino Weinkauf. Fig. 13 shows influence curves in the
unsteady wake of the square cylinder. The two left-most glyphs in
the middle show relatively strong variation in the observed velocity.
The display of inertial pathlines (green) confirms the correctness of
the extracted influence curves (blue).

5.7. Wall-mounted Cylinder

Frederich et al. [FWT08] simulated the time-dependent 3D air flow
around a WALL-MOUNTED CYLINDER. In Fig. 14, influence curves
are shown. This flow contains a laminar layer in the background
and a turbulent layer in the foreground. In laminar areas, influence
curves are rather straight, whereas especially in turbulent areas, the
observed velocities vary strongly. Still, they form curves that can
be extracted with our method. A close-up on the selected glyph in
Fig. 14 is shown in Fig. 1 (right).

6. Discussion

In this section, we discuss the corresponding solution in the massless
case, source inversion in bounded domains, an optional predictor-
correct extension, the application of influence curves to another
problem, and we provide performance measurements.

6.1. Relation to Massless Case

In the massless case, our influence curve is equivalent to a backward-
integrated streakline. In the inertial case, a backward-integrated
streakline also originates from a point x, i.e., starting inertial path-
lines from the streakline in forward direction will end up (spatially)
at x. We can, however, prescribe either of two things: the initial
velocity (when starting from the streakline) or the observed velocity
at x as in [GKKT13]. In this paper, we prescribe the initial velocity.
The other is often problematic, as it requires inertial backward in-
tegration, which is difficult due to strong repelling behavior in the
spatio-velocity domain [HS08, GT16], see Fig. 2a for an example.

Figure 14: Unsteady flow around WALL-MOUNTED CYLINDER.
Behind the obstacle, the flow is slow and turbulent.

6.2. Source Inversion in Bounded Domains

For the argumentation, we use the analogy to massless streaklines.
Since streaklines represent individually advancing particle fronts,
parts of a streakline might exit the flow domain, letting the streakline
decay into disconnected pieces. If the streakline is integrated as a
tangent curve (as in [WT10]), the integration terminates when the
streakline leaves the domain and thus the disconnected pieces are
not found. This means in our context that influence curves cannot
recover further sources if the influence curve leaves the domain
(even though it might reenter at a later time). In the future, we would
like to investigate how points can be efficiently found at which an
influence curve reenters the domain so that the integration can be
continued. For the integration in h, we can directly measure the
integration error as E(c(x,τ)) = ‖x−φ(c(x,τ),v0, t0, τ)‖2, since
an inertial pathline that was released from influence curve point
c(x,τ) should reach the observation point x exactly. Based on this,
we would like to search the domain boundaries for reentry points.

6.3. Accumulating Errors

We described influence curves as tangent curves of a derived vector
field. Generally, tracing curves this way is subject to accumulating
numerical errors. With influence curves, however, this error can be
measured (see Section 6.2), which allows for a predictor-corrector
approach. After each integration step, the error can be reduced
using Newton iterations. For the examples shown in the paper, the
adaptive Runge-Kutta-Fehlberg (RK45) produced small enough
errors. Nevertheless, they could be further reduced if the need arises.

6.4. Reachable Subspaces of the Spatio-Velocity Domain

In recent visualization papers on inertial particles [GKKT13, GT14,
GT15, GT16], the full phase space of possible particle positions and
velocities was considered. This becomes a mass-dependent and time-
dependent 4D or 6D problem, which poses challenges on both the
efficiency of the extraction methods and the visualization. Limiting
the phase space allows to reduce the typically high dimensionality
of computations. The need for such filter operations was identified
in [GT14]. Assuming for instance that inertial particles are released
from rest, we found in this paper that particles may reach a certain
location only with a limited set of possible velocities. Further, we
have shown that the set of initial positions that lead to the same
location form a curve. By a dense sampling of the domain with
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Data set Glyphs Time vmax t0 τ

CENTER, Fig. 4 70 4.1 1 – 20
TREFOIL 2D, Fig. 6 180 3.1 1.2 – 2
TREFOIL 3D, Fig. 8 500 15.6 1.2 – 3
FORCED-D. DUFFING, Fig. 9 70 0.8 3.5 – 8
DOUBLE GYRE, Fig. 10 120 1.0 0.36 0 4
TORNADO, Fig. 11 147 5.4 5 – 3
RAYLEIGH-BÉNARD, Fig. 12 72 5.4 50 – 0.05
SQUARE CYLINDER, Fig. 13 8 14.9 2 10 14
WALL-M. CYLINDER, Fig. 14 72 69.9 11 0 10

Table 1: Numbers of glyphs, extraction time (in seconds) and pa-
rameters used in the figures, shown throughout the paper: maximal
velocity shown in the glyphs vmax, start time t0 (for unsteady flows)
and integration duration τ, parameterizing the curve in [0, τ].

glyphs, we can visualize the spatio-velocity subspace that can actu-
ally be reached by inertial particles. Of course, this raises perceptual
challenges, especially in 3D domains, when occlusion plays a role.

6.5. Performance and Parameters

We used an Intel Core i7-2600K CPU with 3.4 GHz. The number of
glyphs, the extraction time of the influence curves (in seconds) and
the respective parameters for vmax (maximal velocity shown in the
velocity glyph), start time t0 (if unsteady) and integration duration
τ (parameterizing the curve in [0, τ]) are listed for all data sets in
Table 1. The extraction time is determined by the efficiency of the
inertial pathline integration, which depends on the data set. In the
analytic and simpler flows the influence curves were computed in
a few seconds. In unsteady 3D flows, the extraction took up to 70
seconds. Generally, the further we integrate in h, the more expensive
the evaluation of an integration step becomes, since the pathlines
involved in the flow map gradients have longer integration time τ.
After extraction, the scene can be interactively explored and inertial
pathlines can be interactively released from selected glyphs.

7. Conclusions

In this paper, we considered the source inversion problem of inertial
dispersed particles. Given an observation point and a certain initial
velocity, we recovered all locations that an inertial particle could
originate from. We have shown that these locations form a curve,
which we called influence curve and we extracted them by mass-
less pathline integration in a derived time-dependent vector field.
Thereby, all computations were based on inertial forward integra-
tion only. After extraction, we interactively displayed the influence
curves in the spatial domain and placed glyphs at the observation
points, illustrating the velocities with which the inertial particles
arrived. With this, we presented the first solution to the source inver-
sion problem that considers actual inertial trajectories rather than
operating on attracting manifolds only [HS08]. This enables flow
visualization methods that have previously been unaccessable for
inertial particles. We believe that our work will spur further research
in the extension of traditional massless flow visualization techniques
(that are based on backward integration) to the inertial case.

Future work includes the search for filtering methods that allow
to limit computations (such as inertial vortex detection) to regions
in the spatio-velocity domain that are reachable by inertial flow.

Dependent on the application, seeding regions and possibly vary-
ing initial velocities (modeled as probability distributions) play a
role [GKKT13] that could be applied to further filter influence
curves. Further, we would like to determine reentry points at which
influence curves return back into the flow domain.
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Appendix

In the following, we derive Eq. (7). We search for the unknown
vector field h that fulfills

lim
∆τ→0

φ̂(x+∆τh, v0, t0, τ+∆τ)− φ̂(x, v0, t0, τ)

∆τ
=

 0
vr
0

 . (10)

Eq. (10) means that moving the starting point of the inertial particle
integration from x to x+∆τh and increasing the integration time
from τ to τ+∆τ should not change the location where the integration
ends, while the change of the observed particle velocity is vr. In
the following, we construct x+∆τh at time τ+∆τ, i.e., the “next”
location on the influence curve. For ∆τ→ 0 the flow map at τ+∆t
is constructed by taking another “step” after the flow map at τ:

φ̂(x+∆τh, v0, t0, τ+∆τ) = φ̂(x+∆τh, v0, t0, τ)

+∆τ p̂(φ̂(x, v0, t0, τ)) .
(11)

The first summand of the right hand side contains the flow map at an
infinitesimal close location in direction h, which can be constructed
from the flow map at x plus the flow map derivative in direction h:

φ̂(x+∆τh, v0, t0, τ) = φ̂(x, v0, t0, τ)

+∆τ(∇φ̂(x, v0, t0, τ))

h
0
0

 .
(12)

The second summand samples the phase space p̂ after flow map
integration. This is the tangent of the curve at the reached location,
which is also the flow map derivative in start direction p̂ at t0:

p̂(φ̂(x, v0, t0, τ)) = (∇φ̂(x, v0, t0, τ)) p̂(x,v0, t0)

= (∇φ̂(x, v0, t0, τ))

 v0
u(x, t0)−v0

r +g
1

 (13)

Inserting Eqs. (12) and (13) into Eq. (11), and inserting Eq. (11) in
turn into Eq. (10) gives as condition for h:

lim
∆τ→0

∆τ (∇φ̂(x, v0, t0, τ))

h
0
0

+
 v0

u(x, t0)−v0
r +g

1


∆τ

=

 0
vr
0


(14)

Expanding the flow map gradient∇φ̂ using Eq. (4) and considering
only the first n components of Eq. (14) (i.e., spatial subspace) gives

φx (h+v0)+φv

(
u(x, t0)−v0

r
+g
)
+φt = 0 , (15)

which can be rearranged for h by inverting φx to obtain Eq. (7).
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