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ABSTRACT
Glyphs have proven to be a powerful visualization technique for general tensor fields modeling physical phenom-
ena such as diffusion or the derivative of flow fields. Most glyph constructions, however, do not provide a way
of considering the temporal derivative, which is generally nonzero in non-stationary vector fields. This derivative
offers a deeper understanding of features in time-dependent vector fields. We introduce an extension to 2D and 3D
tensor glyph design that additionally encodes the temporal information of velocities, and thus makes it possible to
represent time-dependent Jacobians. At the same time, a certain set of requirements for general tensor glyphs is
fulfilled, such that the new method provides a visualization of the steadiness or unsteadiness of a vector field at a
given instance of time.
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1 INTRODUCTION

Glyphs have gained popularity as a tool for investigat-
ing second-order tensors and their properties. They of-
fer a convenient way to represent some of the under-
lying physical meaning encoded in tensors such as dif-
fusion or stress tensors at a given location in the data.
The Jacobian matrix J of velocity fields is a second-
order tensor, which appears in flow visualization and
describes the local behavior of the flow at a given loca-
tion, possibly in space-time. Unlike diffusion tensors,
the second-order tensor Jacobians appear as general
square matrices, including in particular non-symmetric
matrices. This is generally a 2×2 matrix in 2D space, or
3×3 in 3D that consists of the spatial partial derivatives.

Finding appropriate visualization techniques to rep-
resent these matrices has proven to be a challenging
task. Seltzer and Kindlmann [11] proposed the first
glyphs for 2D tensor data that are able to represent any
second-order tensor using the information encoded by
eigenvalues and eigenvectors. Recently, Gerrits et al.
[3] proposed a construction of glyphs for 2D tensors,
which was then extended to visualize general 3D
tensors as well. However, considering the special case
of time-dependent Jacobian matrices, both approaches
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only deal with spatial derivatives and neglect temporal
information that might be available.

In this paper, we solve the following problem: given
an n-dimensional (n = 2,3) time-dependent vector field
v(x, t), we construct an n-dimensional glyph that en-
codes the space-time Jacobian matrix of v, i.e., all first
order derivatives, both spatial and temporal, of v. This
means that we have to find a glyph representation for a
(n+1)×(n+1) Jacobian tensor. While this is straight-
forward for n = 2 (ending up in visualizing a 3×3 ma-
trix), it is challenging for n = 3 because this requires
the 3D visualization of a 4×4 space-time Jacobian ten-
sor. We show that this tensor, which is not a general 4D
second-order tensor, has some properties that allow a
3D glyph visualization that seamlessly extends existing
3D tensor glyphs.

After analyzing related work in section 2, we present an
extension of an existing second-order tensor glyph con-
struction in section 3 that includes the temporal deriva-
tive and therefore offers, to the best of our knowledge,
the first glyph for time-dependent 2D and 3D Jacobians.
This extension is constructed to in no way impair the
glyph’s capability to encode the spatial derivatives. It
becomes invisible, when the temporal derivative van-
ishes. In this case, the resulting glyphs become identi-
cal to time-independent tensor glyphs.

The results shown in section 4 present our final glyph
designs for 2D and 3D time-dependent Jacobians. Ap-
plying them on sampled locations demonstrates how
the resulting glyphs additionally encode the temporal
derivative of given time-dependent vector fields.



2 RELATED WORK AND BACK-
GROUND

2.1 Tensor Glyphs Visualization
Using visualization of flow fields to gain further insight
of the underlying behavior has produced a huge variety
of techniques that can coarsely be classified in differ-
ent groups: topology-based techniques [9], dense flow
visualization [7], geometric flow visualization [8] and
glyph-based approaches. Glyphs are a convenient vi-
sualization technique, as they are often tailored to fit
a specific application and offer a seemingly unlimited
design space, see Boro et al. [1]. Research trying to de-
velop glyphs for second-order tensors has mostly been
limited to symmetric positive definite matrices. The
pioneering work by Schultz and Kindlmann [10] uses
superquadrics to create glyphs, where shape and orien-
tation are defined by the eigenvectors of general sym-
metric tensors, including indefinite matrices. This is
convenient, as eigenvectors of symmetric matrices are
always orthogonal and therefore easily usable to define
appropriate shapes. A general discussion on different
approaches has been given by Kratz et al. [6]. Seltzer
and Kindlmann [11] recently presented glyphs for gen-
eral – symmetric and asymmetric – second-order 2D
tensors, extending the superquadrics. Gerrits et al. [3]
propose a different approach that provides glyphs also
for general second-order tensors in 3D. Both works of-
fer an in-depth discussion of tensor properties and de-
sign principles leading to a set of requirements for a
suitable glyph which will be covered in more detail in
the next section.

As opposed to steady flows, time-dependent flow fields
are only sparsely covered by glyph-based approaches.
Often pathlines of a finite set of seed points are used
to visualize flow in this case. Especially in topology-
based visualization techniques, several works have been
proposed, where the path of features over time is visu-
alized as presented by Uffinger and Sadlo [13]. And
even though there exist several approaches that try to
extract only meaningful selections to give further in-
sight [14, 4], there is still often visual clutter, overlap-
ping elements or missing information by only rendering
selected features. Hlawatsch et al. [5] downscale path-
lines to represent them as so called pathline glyphs thus
combining both techniques to address this problem.

2.2 Glyph Construction
Schultz and Kindlmann [10] present a set of construc-
tion principles to build glyphs for symmetric tensors,
which includes preservation of symmetry, continuity,
disambiguity, invariance under scaling as well as
eigenplane projection. The last requirement, however,
is not well defined for asymmetric tensors, which is
why Gerrits et al. [3] present a similar set of properties,
but the latter is replaced by the demand for direct

encoding of real eigenvalues and eigenvectors. As
these properties also influence the choices made in this
paper, they are listed and explained in short:

(a) Invariance under isometric domain transformation:
any isometric transformation of the domain should re-
sult in the same isometric transformation of the glyph’s
shape.

(b) Scaling invariance: a uniform scaling of the tensor
has to result in the same scaling of the glyph for any
real positive scaling value.

(c) Direct encoding of real eigenvalues and eigenvec-
tors: all real eigenvalues and eigenvectors of the tensor
should be directly visible within the shape of the glyph.

(d) Uniqueness: a tensor should be represented by a
unique corresponding glyph and vice-versa, such that
for any two dissimilar tensors no similar glyph is pro-
duced and no dissimilar glyphs are produced by the
same tensor.

(e) Continuity: any continuous change of the ten-
sor should result in a continuous change of the glyph,
preventing abrupt changes of the appearance for small
changes.

A glyph that satisfies all of these properties cannot be
encoded by shape alone, but also needs at least one ad-
ditional channel such as color.

(a) (b)

Figure 1: Basic glyph construction. (a) In 2D, each pair
of scaled eigenvectors ( ) is interpolated by four ratio-
nal quadratic Bézier curves ( and ). (b) The 3D case
relies on the 2D construction in a base plane ( ) and
triangular surface patches interpolating the 2D curves
and the third scaled eigenvector.

For a 2D tensor J ∈ R2×2 with real eigenvalues, the
eigenvectors scaled by eigenvalues define an interpo-
lating ellipse. Note that the eigenvectors are not neces-
sarily orthogonal, which is the case only for symmet-
ric tensors. The geometric construction of the glyphs
is based upon modifying this ellipse, such that the di-
rections of the scaled eigenvectors are encoded by the
shape. In [3], this ellipse is parametrized by four ratio-
nal quadratic curves in Bernstein-Bézier form ([2]), and
the center control points and rational weights are modi-
fied to express properties of the glyph. Figure 1a shows
the construction for a “saddle” configuration with two



real eigenvalues with opposite sign, which results in a
concave shape. The sharp corners at the break points
between the rational pieces encode the direction of
eigenvectors and magnitude of eigenvalues. The ellipse
is also well-defined in case of non-real, i.e., a pair of
complex conjugate eigenvalues: then the right singu-
lar vectors replace the eigenvectors in the construction.
The transition between both cases is continuous.

Color is used to indicate the sign of real eigenvalues
and rotation for complex eigenvalues. With shape and
color these glyphs are capable of uniquely represent-
ing every possible 2D tensor such as the Jacobian of a
steady vector field. Moreover, they provide an intuitive
interpretation:

Convex shapes indicate that the eigenvalues share the
same sign, whereas concave shapes imply that the
eigenvalues have different signs. The color additionally
illustrates the sign of the corresponding eigenvalue.
Moreover, discontinuities of the boundary curve,
i.e., “sharp corners”, indicate direction and scale of
eigenvectors. Figure 2 shows examples.

Figure 2: The glyph’s shape indicates the relation of
both eigenvalue signs. A red glyph has two positive,
the blue one two negative eigenvalues. They are there-
fore convex shapes. If the eigenvalues have opposite
eigenvalues, the shape is concave.

An ellipse without discontinuities indicates that there
are no unique eigenvectors as the eigenvalues are either
identical – the shape is a circle – and/or complex. In the
latter case, the rotation is encoded by different colors.

Figure 3: Ellipses indicate identical and/or complex
eigenvalues. A perfect sphere indicates two identical
eigenvalues, whereas ellipses represent rotational be-
havior. Colors close to yellow indicate counterclock-
wise, those close to green clockwise rotation.

In 3D, an additional eigenvector and eigenvalue needs
to be visually encoded by the glyph. The construction
is partially based on the 2D configuration: eventually,
two eigenvectors (or two left singular vectors in case of
a complex conjugate pair of eigenvalues) span a sup-
porting base plane, in which the 2D construction is ap-

plied. The 2D curves in the plane are used together with
the remaining real eigenvector to setup a shape made
of surface patches. Figure 1b illustrates the construc-
tion of one patch, and figure 4 shows examples of 3D
glyphs with a similar color coding as for the 2D case.
This review is simplified, the different cases depend on
the eigenvalues. For an in-depth view on the construc-
tion, please refer to [3].

Figure 4: Glyphs representing different 3D Jacobians.
From left to right: All eigenvalues are positive; The two
positive eigenvalues span the base plane and the third,
negative one makes for the concave shape; The base
plane indicates rotational behavior in the corresponding
plane and additional outflow.

3 EXTENSION FOR TIME-
DEPENDENT TENSOR GLYPHS

The glyphs shown in the previous section can visualize
any given 2D or 3D Jacobian as long as the feature is
steady. We therefore use them as a construction founda-
tion to build upon. They need to be altered or extended
in some way, such that they are able to represent the ad-
ditional information encoded in time-dependent Jaco-
bians. To find a suitable extension, we need to analyze
the differences between the steady and unsteady case
and discuss, how a suitable mapping of the additional
data to the same dimension as the glyphs we build upon
can be found. First, we do this for Jacobians of 2D un-
steady vector fields and present a simple addition to the
given glyph, following a set of requirements and later
extend the idea to the 3D case.

3.1 Time Dependent 2D Tensor Glyphs
A steady 2D flow is given by

v(x,y) =

(
u(x,y)
v(x,y)

)
,

where the Jacobian matrix J is defined as

J(x,y) =

(
ux uy
vx vy

)
This is the spatial gradient of the vector field and hence
the spatial Jacobian. Using eigendecomposition, we
obtain the eigenvalues λ1,λ2 and the corresponding
eigenvectors e1,e2. An unsteady flow, however, has
time as an additional dimension. We define

v̄(x,y, t) =

u(x,y, t)
v(x,y, t)

1





to be a time-dependent 2D vector field and the corre-
sponding space-time Jacobian (see, e.g., [15]) as

J̄(x,y, t) =

ux uy ut
vx vy vt
0 0 0


with eigenvalues λ1, λ2,0. The associated eigenvectors
are (

e1
0

)
,

(
e2
0

)
, f̄ where f̄ =:

a
b
c

 .

This Jacobian must not be mistaken with a general 3×3
matrix. Due to the fact, that the last row of J̄ is entirely
made up of zeros, two of these eigenvectors are simply
the eigenvectors e1 and e2 of J with an additional zero
as their component in the new dimension. The addi-
tional eigenvector f̄ with its components a,b,c ∈ R is
associated with the zero eigenvalue and fully encodes
the temporal derivative, included in J̄. We can there-
fore use e1 and e2 to build the corresponding 2D glyph,
which we call spatial glyph, and use only f̄ to be some-
how added to it. As we want our new glyph to be of the
same dimension as the spatial glyph, we require a pro-
jection of f̄ ∈R3 to a vector g ∈R2 on the visualization
plane. To define an appropriate and unique projection,
we demand

1. Given two eigenvectors f̄1, f̄2 corresponding to the
temporal derivative and the projected 2D vectors g1,
g2, if f̄1 and f̄2 are parallel, g1 and g2 have to be
identical.

f̄1 ‖ f̄2 ⇒ g1 = g2 .

2. If f̄1 and f̄2 are not parallel, g1 and g1 must never be
identical

f̄1 ∦ f̄2 ⇒ g1 6= g2 .

3. When the field is stationary, g should not be visible.
In this case, the resulting glyph is identical to the
glyph based on the stationary Jacobian G(J)=G(J̄).
Therefore, the corresponding vector g should be the
null vector. Additionally, the transition from unsta-
ble to stable should result in a smooth transition to
the null vector.

f̄ →

0
0
1

 ⇒ g→
(

0
0

)
.

We propose the following projection that satisfies the
above requirements:

g =
1∣∣∣∣f̄∣∣∣∣
(

a
b

)
,

(a) (b)

Figure 5: Adding sticks to the base glyphs to allow
time-dependent glyphs to be represented. The eigen-
vector f̄ corresponding to the time derivation is pro-
jected onto the vector g ( ). A line cast from the center
of the glyph in forward and backward direction of g in-
tersects the boundary of the glyph exactly twice, unless
g is the zero vector. Sticks ( ) representing g and -g are
then added at those locations. (a) Construction of the
2D time-dependent Jacobian glyph. (b) Construction of
one patch and one stick representing the eigenvalue f̄ of
an 3D time-dependent Jacobian glyph.

where a and b are the first two components of f̄.
This vector is then visualized by adding two identical
sticks to the glyph, one representing g, the other −g
and both given a length of s||g||, where s > 0 ∈ R can
be used as a constant scaling factor. Rendering both ori-
entations of g is due to the fact, that f̄ is an eigenvector
of J̄, and therefore satisfies the same symmetry prop-
erties. To reduce visual clutter, we move these sticks
along the lines, given by their directions to the loca-
tions where the line intersects the boundary of the un-
derlying spatial glyph’s shape. Figure 5a illustrates this
construction.

3.2 Time-Dependent 3D Tensor Glyphs
Finding new glyphs representing 3D time-dependent
Jacobians is analogous to the 2D case. The addi-
tional temporal information encoded by the Jacobian
J̄ ∈ R4×4 is given by the additional eigenvector f̄ ∈ R4,
where f̄ = (a b c d)T.
We propose projecting f̄ onto the 3D vector g ∈ R3 by
using

g =
1∣∣∣∣f̄∣∣∣∣
a

b
c

 ,

and visualizing it by adding tubes to the spatial glyph,
created by using eigenvalues and eigenvectors of J.
These tubes are then moved along their vector direc-
tions as well, until they reach the points, where their
corresponding line would intersect the glyph patch.
In that way, they are always visible and not rendered
within the glyph, unless the temporal derivative is zero,
in which case the new vector becomes the zero vector
as demanded.



Figure 6: Glyphs representing different 2D Jacobians. The underlying features are less temporally stable to the left
and more stable to the right. The stick has vanished in the last glyph, which shows that this feature is completely
stable.

Figure 7: 3D Glyphs representing the same location in an unsteady flow field over time. The glyph as well as the
stick representing the temporal derivative change smoothly over time.

Because both new constructions, 2D and 3D alike, fol-
low the presented set of rules, they are suitable for cre-
ating unique tensor glyphs for any given 2D or 3D Ja-
cobian, unsteady or steady, and also follows all of the
glyph design requirements that were discussed earlier.

4 RESULTS
First, we visualize different 2D time-dependent Ja-
cobians. Figure 6 shows a selection of 2D glyphs
for randomly chosen time-dependent 2D Jacobians
with decreasing temporal derivative from left to right.
These include glyphs based upon real-valued as well
as complex-valued eigenvalues and eigenvectors. The
additional sticks are always moved to the boundary of
the spatial glyph, for any given shape.

In figures 9 and 10, our construction is applied to build
glyphs representing the Jacobians at sampled locations
of one time slice of a 2D unsteady flow behind a cylin-
der. This is a sufficiently complex choice as a whole
variety of different features is present as can be seen by
the variety of different spatial glyphs. As the time pro-
ceeds, alternating vortices, as illustrated by the glyphs
using yellow and green colors, are created and trans-
ported to the right. Therefore, Jacobians at several lo-
cations comprise strong temporal derivatives, indicated
by the additional sticks being clearly visible. Locations
where the derivative vanishes are analogously indicated
by small or even no sticks. While figure 9 shows the
glyphs superimposed to an additional line integral con-
volution (LIC) texture of the underlying flow field, fig-
ure 10 displays the same glyphs in front of a different
LIC texture which in this case represents the feature
flow field [12] at the selected time. The projected ad-
ditional eigenvectors are therefore tangent to this field
at the given location. Two closeups for each field show
zoomed-in areas of interest inside those fields.

To further highlight the sticks, the same domain is ren-
dered without any supporting background LIC texture
in figure 11.

Figure 7 demonstrates the new 3D glyphs, as it shows
sampled time steps of the development of a 3D Jaco-
bian at the same location evolved over time. The under-
lying changing Jacobian is computed by linear interpo-
lation of two vector field time slices. The spatial glyph
changes independent of the time derivative, whereas the
added tubes change direction due to the projected vec-
tor, but change location due to change of glyph shape,
as seen in figure 8.

In figure 12, the glyphs are used to visualize regularly
sampled locations in the 3D unsteady Jacobian field of
an analytical flow with one moving center in the middle
of the field. The whole flow is steadily moved to the
right over time. To illustrate the underlying flow field,
a set of illuminated streamlines is added. Here, too,
the new glyphs show a variety of different underlying
Jacobians, including constructions based upon tensors
with complex and real-valued eigenvalues.

Figure 8: Sticks visualizing the temporal derivative are
always moved along their directions to the boundary of
the glyph, so they are always visible, no matter whether
the spatial glyph is small (left) or large (right).



Figure 9: Glyphs visualizing the Jacobian matrix of the flow around a square cylinder with two closeups (rectan-
gles). The underlying LIC image visualizes the fluid flow.

Figure 10: Glyphs visualizing the Jacobian matrix of the flow around a square cylinder with two closeups (rectan-
gles). The underlying LIC image visualizes the feature flow.

Figure 11: Glyphs visualizing the Jacobian matrix of the flow around a square cylinder without additional sup-
porting LIC textures.

5 DISCUSSION

Looking at figure 9, our newly designed 2D glyphs al-
low to see the same structures of the underlying flow
field as the steady or spatial 2D glyphs before. By find-
ing a mapping onto the same visualization plane and
moving it on the shape boundaries, encoding the addi-
tional temporal information has not changed the spatial
glyph. Therefore, rotational sections as well as laminar
flows can still be easily determined in the given exam-
ple flow. The same statement holds for the 3D case as
displayed in figure 12. Even though, the addition of a

stick or tube respectively, is only a small extension to
the known glyphs, it is one, that does not impair the
expressiveness of the spatial glyph and offers a visu-
alization technique for any 2D or 3D time-dependent
Jacobian, symmetric or asymmetric.

As the sticks or tubes added to the glyphs are rendered
in both directions of the vector, they not only follow the
mathematical nature of eigenvector symmetry, they are
also always visible, even in the 3D case, regardless of
the point of view as long as the underlying Jacobian is
unsteady. An appropriate scaling factor or a change of



Figure 12: 3D time-dependent flow with a moving vortex in the center. All features are moving to the right over
time. The newly constructed glyphs are rendered at sampled locations at one time slice. Illuminated streamlines
illustrate the underlying flow.

thickness can be chosen to further emphasize this addi-
tion if necessary.

This work focuses on finding a construction of glyphs
for general 2D and 3D time-dependent Jacobians while
meeting a set of specific design requirements. The tran-
sition between the different Jacobian glyphs is smooth,
including a change of vector direction or vector length,
which is displayed in figure 7, where a time series of the
glyphs at the same location over time is shown. This al-
lows our new construction method to seamlessly build
upon the building requirements for the initial glyphs,
and simply extend them.

When rendered on top of the feature flow field LIC tex-
ture, as seen in figure 10, the glyph’s sticks are always
tangent to it at the sampling location. This field allows
tracking critical points over time (see, e.g., [12]) and
therefore offers an insight of the progression of flow
feature. We can predict glyphs with longer sticks to
be moving or changing over time, while shorter or no
sticks indicate that a feature is quite stable. The shown
flow around the cylinder has vortices going along one
axis to the right, which is also indicated by the sticks
of the glyphs in those areas pointing in this direction.
We can remove all supporting LIC textures as in figure
11 and still understand the flow itself, visualized by the
spatial glyphs at the same time as the feature flow en-
coded by the additional sticks. Inquiring the analytic
flow shown in figure 12, all the glyphs indicate this be-
havior by having tubes added to them, similar in length
and direction, as the whole underlying flow is moving
horizontally along one axis over time.

6 LIMITATION AND FUTURE WORK
Even though these extensions for the general second-
order tensor glyphs can be applied to any temporal
derivative of first-order tensor fields, this is not a con-
struction method for general 4D second-order tensors.
The fact, that the partial derivative of the added dimen-
sion is always zero, allows us to utilize glyphs con-
structed in the remaining subspaces. This added dimen-
sion can then be projected onto the subspace and added
to the glyph.

This work did not address deeper insights on visual per-
ception of colors, controlled sampling of the underly-
ing domain, or user studies, about the acceptance of the
newly constructed glyphs. Dealing with cases of non-
uniqueness when visualizing 3D tensors of rank 1 re-
mains another inherited limitation of the glyph design
based upon [3].

Our decision to move the sticks to the boundary of the
glyph is mainly due to reducing visual clutter as well
as to ensure visibility in the 3D case. However, in the
2D case, these sticks may give the impression to be
only overlapped by the geometry and therefore be much
longer, when the glyph is larger. As the two sticks rep-
resent the symmetry property of an eigenvector, their
directions are identical and only reflected. They cannot,
however, provide any information about which choice
of sign represents the actual change of position of the
feature to the next time step.
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