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Hyper-Obijective Vortices

Tobias Glnther and Holger Theisel

Abstract—AImost all properties of vector fields, including magnitude, direction, A2 and vorticity change under arbitrary movements of the
observer. This is undesirable since measurements of physical properties should ideally not depend on the way the (virtual) measurement
device moves. There are some properties that are invariant under certain types of reference frame transformations: Galilean invariance
(invariance under equal-speed translation) and objectivity (invariance under any smooth rotation and translation of the reference frame).
In this paper, we introduce even harder conditions than objectivity: we demand invariance under any smooth similarity transformation
(rotation, translation and uniform scale) as well as invariance under any smooth affine transformation of the reference frame. We show
that these new hyper-objective measures allow the extraction of vortices that change their volume or deform. Further, we present a
generic approach that transforms almost any vortex measure into a hyper-objective one. We apply our methods to vortex extraction in 2D
and 3D vector fields, and analyze the numerical robustness, extraction time and the minimization residuals for the Galilean invariant,

objective, and the two new hyper-objective approaches.

Index Terms—Flow visualization, vortex extraction, objectivity, affine invariance

1 INTRODUCTION

HE extraction of vortices in time-dependent vector fields plays
Tan important role in many scientific problems, including
vehicle design in engineering, the transport of microorganisms
across the oceans, as well as wind observations in meteorology to
name a few. A multitude of formal vortex definitions were proposed
over the years [23], [28], [31], but none emerged as the ultimate
solution. One reason is that the result of most vortex measures
depends on the movement of the reference frame, which limits
their reliability in practice. As an illustrating example, consider
the flow of a river that is observed from a helicopter above it. Any
movement of the helicopter generally leads to different observations
of the flow, see Fig. 1. The invariance of a vortex measure
under a certain type of reference frame transformation directly
translates to the ability to correctly track vortices that perform this
type of transformation. Galilean invariant methods, for instance,
are able to track vortices that perform equal-speed translations,
so-called Galilean transformations. Objectivity is the invariance
under any smooth rotation and translation of the reference frame
[46], and hence, vortices are allowed to arbitrarily rotate and
translate. The recent and (still ongoing) discussion and debate on
the objectivity in fluids, and in particular in vortex detection, has
been initiated by Haller [14], [16], [27], [39], leading to several
objective vortex characterizations. In this paper, we extend the
work of Giinther et al. [10] to go beyond objectivity. Using a
linear optimization, we locally transform any vector field into a
reference frame, in which the vector field appears as steady as
possible, i.e., in which the temporal derivative of the transformed
field vanishes. Thereby, we allow for more general transformations
than only rotations and translations to take the vector field
into a local optimal reference frame. This includes similarity
transformations (translation, rotation and uniform scale—the pilot
might change altitude), as well as general affine transformations—
the pilot may also roll the helicopter, which distorts the view.
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Fig. 1: Overview of reference frame transformations.

We call these methods hyper-objective to indicate that they are
a generalization of objectivity, which is included as a special
case. By restricting the reference frame transformation to the class
of Galilean transformations, we show that a subtraction of the
feature flow field [43] minimizes the temporal derivative of the
resulting field. This proves that the coreline extraction of Weinkauf
et al. [47] is optimal when assuming that vortices perform Galilean
transformations. The more degrees of freedom the reference frame
transformation has, the greater are the numerical difficulties. We
study the extraction time, residuals and numerical robustness of all
proposed methods in a number of analytic and real-world 2D and
3D vector fields. The contributions of this paper are:

e two novel classes of reference frame invariance, named
similarity invariance and affine invariance,

e a generic framework that makes any property that depends
on the velocity or its derivatives hyper-objective, i.e.,
similarity invariant and/or affine invariant,

e alocal vector field decomposition that splits a flow into a
near-steady reference frame and an ambient transport part,

e acomparison of Galilean invariant [47], objective [10] and
hyper-objective vortex coreline extraction methods,

o a proof that subtraction of the feature flow field minimizes
the temporal flow derivative for Galilean transformations.

After a brief summary of the notation used in this paper, we
provide an overview of related work in the area of vortex extraction
in Section 2. The analysis of various types of reference frame
transformations follows in Section 3. We start with the most general
case (affine invariance) and then gradually decrease the number
of degrees of freedom. We introduce similarity invariance, touch
upon objectivity [10], and finally arrive at Galilean invariance. A
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local optimal vector field decomposition is described in Section 4.
Section 5 defines vortex measures in the respective optimal frames.

Implementation details are given in Section 6, and all methods are
compared and evaluated in Section 7 in a number of 2D and 3D
vector fields. The paper closes with a conclusion in Section 8.

Notation
Let v(x,t) = v(x,y[,z],t) be an n-dimensional (n = 2,3)
unsteady vector field, defined in the domain D C R™, x € D:
u(x, t)
v(x,t) = | v(x,1) (1)
[w(x,1)]

Its spatial derivatives are contained in the Jacobian matrix
J= (%, g—;’[, %]). We denote the temporal derivative as v; =
S—‘t’ and thus acceleration becomes a = Jv + v;. The Jacobian J
can be decomposed into the strain rate tensor S and the vorticity

tensor 2 as J = S + Q, with:
J+JT
2 2
where S is a symmetric and € is
matrix. Following [10], we wuse the function ap that
transforms the anti-symmetric part of a matrix to a
scalar/vector. In 2D, ap(M) = 1(mis — mai). In
3D, ap(M) = 1(mz2 —mos, miz—ms1, mas —mia)T
where m; ; refer to the elements of the matrix M. The inverse
of ap is the function sk that transforms a scalar/vector into an
antisymmetric matrix. In 2D and 3D, we have:

S =

2

an anti-symmetric

a 0 - B
sk:(a)z(_oa g) , sk{Bl=|~r 0 -—-a
v -8 « 0

With this, vorticity is defined in 2D and 3D as:
2D: w = ap(N) 3D: w = ap(N) 4)

The operator vec(IM) reshapes a matrix into a vector by appending
the columns. Further, we denote the Parallel Vectors Operator [28]
of two 3D vectors as ||, which returns all locations at which two
given vector fields are parallel.

Further, we make use of the feature flow field f [43], [47],
which can be defined in space as, cf. [9]:

f=-J'v,. (5)

The feature flow field gives the direction, in which neither of the
vector field components will change over time. It is therefore useful
to track features, such as critical points [43].

Later, we denote the identity matrix as I, the trace of matrix
M as tr(M) and the Euclidean norm as ||[M|| = /tr(M MT).

2 RELATED WORK

In this section, we explain the most commonly used vortex
measures. Numerous other vortex extraction methods have been
proposed in the literature, and we cannot cover them all. We refer
to [13], [23], [28], [31] for a comprehensive overview.

2.1 Region-based Methods

We begin with region-based methods, which calculate a scalar
value for each location in the domain. Using these methods, vortex
regions are found by suitable thresholding. Next, we classify
existing methods into Galilean invariant and objective techniques.

2.1.1 @Galilean Invariant Methods

Galilean invariance is the invariance of a measure under equal-
speed translations of the reference frame of the form:

X"=x+cy+tec, , t'=t—a (6)

where cg, c; are constant vectors. Measures derived from the
Jacobian J, acceleration a and the expression v — f are Galilean
invariant. Many region-based vortex extraction methods are based
on the decomposition of Jacobian J into its symmetric part S and
its anti-symmetric part €2, cf. Eq. (2). In 2D, the signed vorticity
w can be read from the vorticity tensor 2. In 3D, vorticity w is
vector-valued, and its magnitude |w| relates to rotational speed, see
Eq. (4). Jeong and Hussain [18] characterized vortices as regions
in which the second-largest eigenvalue of S? + 2 is negative, i.c.:

A2 (S7+ Q%) <0 (7)

which corresponds to a pressure minimum. Okubo [26] and
Weiss [48] independently developed a criterion for divergence-free
flows, which is the 2D counterpart to the Q-criterion of Hunt [17]:

1 2 2
Q=5 (I -11sI®) >0 ®)

Kasten et al. [19], [20] extracted Galilean invariant vortex regions
by the use of acceleration a.

2.1.2 Objective Methods

Current state-of-the-art feature extractors aspire to be objective,
[10], [15], [16]. In continuum mechanics, objectivity refers to the
invariance of a measure under a change of the reference frame that
transforms a point (x, t) in space-time to a new point (x*,t*) by

X' = Q(t) x+clt) .

where Q € SO(3) is a rotation matrix that is in the group of
all rotations about the origin of the Euclidean space R?, c is a
translation vector, and a is a constant. We assume Q and c to be
smooth functions of ¢, cf. [46]. While objectivity proved useful for
vortex extraction [10], [16], we introduce even stronger classes of
reference frame invariance, which we name hyper-objective.

The strain rate tensor S is one of the few objective differential
properties of a vector field, cf. [10], [14]. Haller [14] proposed the
M., criterion, which defines a vortex as a set of fluid trajectories
along which the strain acceleration tensor is indefinite over
directions of zero strain. For this, he derived a criterion to decide
whether a particle is in a non-hyperbolic region, which is checked
along particle trajectories, assuming that long-term non-hyperbolic
behavior is an indicator for a vortex. Recently, Lagrangian Coherent
Structures (LCS) [15] have been computed objectively. A subclass
are elliptic LCS, which are nested closed curves that preserve arc
length and area in incompressible 2D flows. Haller [15] considered
the outermost elliptic LCS as the boundary of a coherent vortex.
A Eulerian perspective was chosen by Serra and Haller [39],
who extracted objective Eulerian vortex boundaries as closed
instantaneous (per time step) curves across which the averaged
material stretching rate shows no leading-order variability. They
used these (instantaneous) curves to forecast the persistence of a
vortex over time [38].

Drouot and Lucius [8] computed an objective counterpart to the
Galilean invariant vorticity tensor 2. They named it the relative
vorticity tensor {2, which considers the vorticity in strain basis:
Q = Q — W. Thereby, the rate-of-rotation tensor W is given

t"=t—a ©)]
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by: De;/Dt = W e;, with e; being the unit eigenvectors of S
and D /Dt being the material derivative. Tabor and Klapper [42]
defined tensor €2 independently and called it effective rotation. Its
objectivity was proven by Astarita [1], who used this tensor to
calculate an index that classifies the domain into extension-like
motions and rigid-body-like rotations. With the relative vorticity
tensor £ traditional region-based methods can be made objective,
simply by replacing vorticity tensor £2 by €2. An objective
counterpart to Ao in Eq. (7) is, A2(S? + ©2) < 0, cf. Martins et
al. [25] and an objective counterépart to the @ criterion in Eq. (8)
is, cf. Haller [14]: [||2]|> — [|S|*]/2 > 0. See Thompson [44] for
a recent review of latest advances in this area.

Haller et al. [16] recently took a continuum dynamics perspec-
tive. Based on a derivation starting from a dynamic polar decompo-
sition of the deformation gradient, they eventually observed that
the subtraction of any two vorticity values w(x1, t) — w(xa, t)
is objective, which led them to define relative vorticity measures.
They introduced the instantaneous vorticity deviation (IVD), which
subtracts the spatial mean of vorticity in a local neighborhood
U C D. A Lagrangian extension that considers the temporal
evolution of this measure is the Lagrangian-averaged vorticity
deviation (LAVD), which is computed by integrating IVD along a
pathline. Note that the value-range of both methods depends on the
neighborhood size. Vorticity was reported to produce false-positives
in shear flows [32], which need to be removed in a post-process,
e.g., by only considering closed vorticity iso-lines with a notable
maximum inside. Lugt [24] noted that a local vorticity extremum
is not necessary for the existence of a vortex.

2.2 Line-based Methods

While there is no universal definition of a vortex region, the line
that all particles rotate around is commonly referred to as vortex
coreline. To find these corelines, Sujudi and Haimes [41] formulated
the reduced velocity criterion: v — (v e)e = 0, which says that
the projection of the flow vector v along the eigenvector e with
real-valued eigenvalue gives zero. In other words, the flow is
tangential to this eigenvector and exactly on the coreline, there is
no swirling motion. Peikert and Roth [28] introduced the parallel
vectors operator || to rephrase this as v || J v, which avoids explicit
computation of the eigenvectors. The above mentioned methods
only work in steady flows and they are not Galilean invariant in
3D. A Galilean invariant extension was presented by Weinkauf et
al. [47], who identified swirling motion in unsteady flow, using:

2D: v—f=0 3D: J(v—of)||v—f (10)

where f = —J~!v, is the feature flow field [43], see Eq. (9).
Several other coreline extractors have been introduced in the flow
visualization literature. Kasten et al. [19], [20] used the notion
of vanishing acceleration a = 0, which is in 2D identical to
Eq. (10). Recently, they extended their method to 3D flows [21].
Sahner et al. [34] extracted extremum lines of the region-based
methods Ao and ), which was followed by Schafhitzel et al. [36],
who considered the topology of A2-based vortex corelines. Later,
Sahner et al. [35] computed vortex and strain skeletons as extremal
structures of M. Roth and Peikert [33] extracted bent corelines
using a higher-order method. Giinther et al. [11] proposed a general
approach to transform any Galilean invariant method into a rotation
invariant one. Bujack et al. [S] proposed to analyze the extrema of
the determinant of J. The approach of Bujack et al. [5] does not
involve the temporal derivative and is therefore not equivalent to
any of the above Galilean invariant methods.

2.3 Selection of Reference Frame

Instead of finding vortex definitions that are invariant under certain
types of reference frame transformations, some techniques try to
determine a suitable reference frame.

2.3.1 Vector Field Decomposition

For simple cases, a suitable reference frame can be found by
subtraction of a mean flow or a certain percentage of the inflow
velocity, which is set by domain experts by experience. Wiebel et
al. [49] proposed to subtract the harmonic component of a flow
decomposition. Harmonic flows are by definition divergence-free
and curl-free, and thus their subtraction does not alter the local
divergence and rotation properties. A common flow decomposition
is the Helmholtz-Hodge decomposition (HHD), which decomposes
a vector field into a scalar potential (curl-free), a vector potential
(divergence-free) and a harmonic vector field. See Bhatia et al. [3]
for a survey on the HHD. In order to extract vortices, Bhatia et
al. [4] introduced their natural HHD. It should be noted, however,
that the subtraction of a harmonic part cannot capture rotational
movements, as it is always irrotational. Aside from using the HHD
to change the reference frame, vortices were identified as extremal
structures of the magnitude of the divergence-free part [45].

2.3.2 Optimization-based Measures

The importance of the reference frame has been recognized already
in the 70s, e.g., by Lugt et al. [24], who characterized vortices as a
fluid moving around a common axis, which can be described by
closed or spiraling streamlines if a reference frame exists for which
the flow field becomes steady. Similarly, Robinson [32] considered
vortices as instantaneous streamlines that exhibit a roughly circular
or spiral pattern, when viewed from a reference frame moving with
the center of the vortex core. Both definitions are equivalent, since
from the perspective moving with the vortex, the flow becomes
steady. However, Lugt [24] noted that in unsteady flows there
is no global reference frame in which the entire flow appears
steady, since vortices might move in different directions, making
it impossible to follow all vortices at the same time. Perry and
Chong [29] noted that for certain flows, e.g., jets in cross-flow,
vortices accelerate and become steady in different frames. For this
reason, Giinther et al. [10] did not seek for a global (spatially-
constant) reference frame, but for a local one, which allowed them
to follow the vortices individually. They estimated an optimal local
reference frame for every point (x,¢) in which the transformed
velocity field is as steady as possible in a local neighborhood
around (x,t). They limited the reference frame transformation
to rotations and translations and have shown that the optimal
parameters (angle and offset) can be found by solving a linear
problem. For any rotation and translation of the reference frame that
can be applied to the input data, their method computes the same
distinguished local reference frame. All techniques applied in this
frame, therefore become independent of rotations and translations
of the input. Hence, standard vortex measures such as Sujudi-
Haimes [41] and A5 [18] become objective in the optimal frame.
Since the transformation into the optimal reference frame was
restricted to rotations and translations, the approach did not include
(non-)uniform scale or shear. Therefore, deforming vortices might
not be captured well, which can occur near boundaries.

3 OPTIMAL REFERENCE FRAMES

In this paper, we extend the optimization-based method of Giinther
et al. [10] by investigating different degrees of freedom for
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optimal reference frame transformations. In Section 3.1, we begin
with the most general case, which is the invariance under affine
transformations of the observer. Afterwards in Sections 3.2-3.4,
we gradually decrease the number of degrees of freedom until we
arrive at the well-known class of Galilean invariance.

3.1

To introduce the most general case, we propose the invariance
under smooth affine transformations of the reference frame. For
this, we consider transformations of the form:

Affine Invariance

x*=R(t)x+c(t) , t'=t—a

an

where R(t) is a general invertible matrix, c(¢) is a translation
vector and a is a constant. Affine invariance is formally defined:

Definition 1. A scalar s is affine invariant if it remains unchanged
under any change of the reference frame as in Eq. (11). A vector
r is affine invariant if Eq. (11) transforms it to r* = R(¢) r. A
second-order tensor T is affine invariant if Eq. (11) transforms
itto T* = R(t) TR(t)~ L.

Applying Eq. (11) transforms the vector field into the new frame,
which gives v*, J*, a* and v}, see Appendix A.

Similar to [10], we estimate an optimal reference frame locally
for every point (x, t). The local frame (R(t), c(t)) is chosen such
that the transformed velocity field becomes as steady as possible in
a local neighborhood U around (X7 t), i.e., the temporal derivative
of the transformed field is minimized:

/ |vi||?dV — min. (12)
U

In the following, we denote R(t) as R for brevity. We minimize
Eq. (12) locally: We locally assume that R(¢) and c(t) are spatially
constant and we solve for the optimal frame at each point in space-
time individually. For this reason, the derivatives of R and ¢ cannot
be computed by finite differences, and are thus instead computed
explicitly. By setting R(¢) = I and c(t) = 0, we assure that the
optimal transformation passes through the point x at time ﬁl. Thus,
at every point (x, t), we only search for the unknowns R = %{,
R = dR & — %, ¢ = %, which contain 12 scalars (angles and
offsets) in 2D and 24 in 3D.

Minimizing Eq. (12) is not straightforward, since v; is non-
linear in R, R, ¢, ¢. We found, however, that v} can be linearized
by substitution. Instead of solving for R, R, ¢, ¢ directly, we solve
for a suitable combination of these unknowns, which are stored in
vector u by rewriting v into the equivalent form:

vi=R (vi —Mu).
with the 3 x 24 matrix M in 3D:
M=(@wIl—-2J, vI—yJ, wI—2J, J, I, 21, yI, 21)

13)

(14)
and the 24-vector of reference frame transformation parameters:
—vec(Hy)
ky
u=| (15)
—vec(Hs)

1. Not prescribing R and c results in a family of minimizers. By setting
R = I,c = 0, the solution at x is selected. The other solutions would be
transformed by R, ¢ and are not affine invariant, which is analogue to [10].

4

Matrices Hy, H3 and vectors k; and k3 contain combinations of
the unknown reference frame parameters, which are detailed in
Appendix A. In 2D, u is a 12-vector and the 2 X 12 matrix M is

M=@wIl—-2aJ,vI—yJ,J, I, 21, yI). (16)
Eq. (13) shows that vector field and reference frame are completely
separated: M contains only v and its derivatives, while all
information of the frame is stored in u. The optimal u is found by
minimizing Eq. (12) using Eq. (13), which is the solution of the
linear system:

Mu=y (17)

with l\A/I:/MTMdV , y:/MTvt dV. (18)
U JU

Let @ = (—vec(H,), ki, —ks3, —vec(H3))T = M~1¥ be the
optimal u. The new fields in the locally optimal frame are

v=v+H; x+k (19)
J=J+H, (20)
vi=v;—Mu 2n
a=Jv+v, (22)

which follows directly from insertion of u from Eq. (15) into
the Egs. (45)—(48) in Appendix A. Note that we did not need to
compute the actual reference frame parameters R, R, ¢, € directly.
Instead, we only needed to determine suitable combinations of
them that were stored in u. We refer to Appendix B for a proof
that the vector field in the optimal frame Vv and its derivatives J,
Vi, a are affine invariant.

3.2 Similarity Invariance
In vision, transformations that include rotation, translation and
uniform scale are known as similarity transformations. Formally:

x* =s(t) Q) x+c(t) , (23)

where Q(t) € SO(3) is a rotation matrix, s(t) is a positive scalar,
c(t) is a translation vector, and a is a constant. We assume Q(t),
s(t), c(t) to be smooth functions of ¢ and denote them as Q, s, c.
The temporal derivative of the transformed vector field is:

v; =Q (vi —Mu)

t*=t—a

(24)

In 3D, u = (uy,us, us, ug, us, ug) is a 14-vector. With X =
sk(x) and V = sk(v), the 3 X 14 matrix M can be written as:

M=(-JX+V,J, X, I, Jx+v,x). (25)
In 2D, M is a 2 X 8 matrix
M= (-Jx,+v,,J,x,, I, -Ix+v, x) (26)

with x, = (~y,2)%, v, = (—v,u)T, and u is an 8-
vector. Note that u; and us are scalars in 2D. Let u =
(W1, Uo, U3, Uy, Us, Ug) | be the optimal u that solves Eq. (17).

Then, the new fields in the locally optimal reference frame are

27
(28)

V=v+sk(U)x—usx+ U2
J=J+sk(a;) —us1.

v, and a follow directly from vV and J as in Egs. (21) and (22).
We refer to Appendix C for a derivation of Egs. (25)—(28).
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3.3 Objectivity
We briefly report the findings of Giinther et al. [10]. They applied

rotations and translations to obtain objective measures, cf. Eq. (9).

The temporal derivative of the transformed vector field is:
vi=Q (vi —Mnu) (29)

In 3D, u = (uy, uz, us, uy) is a 12-vector. With X = sk(x) and
V = sk(v), the 3 x 12 matrix M is:

M=(-JX+V,J, X, I). (30)
In 2D, M is a 2 X 6 matrix
M= (-JIx,+v,,J, x,, ]I 31)

with x, = (—y,7)T, v, = (—v,u)T, and u is a 6-vector. As

with similarity invariance, u; and us are scalars in 2D. Let u =
(Wy,Ua, U3, 1y) T be the optimal u that solves Eq. (17). Then, the
new fields in the locally optimal reference frame are

=v+ sk(m)x + Uy

v (32)
j = J —+ Sk(ﬁl) .

(33)

v, and a follow directly from v and J asin Egs. (21) and (22).

3.4 Galilean invariance

Finally, we derive the optimal reference frame among all Galilean
reference frame transformations. This leads to Galilean invariance,
which is the invariance under equal-speed translations, see Eq. (6).
Using Eq. (48) with R(¢) = I and c(¢) = c¢ + t ¢y, this gives

(34)

with M = J and u = c;. For Eq. (34), vi = 0 has a local
closed-form solution (no neighborhood U needed) for unknown u:

vi=vi—Mnu

u=J'v, (35)
which gives the new optimal fields

Vv=v-+u 36)

J=1J. 37
Note that with f = —J~1v,, the subtraction of the feature flow

field (v — f) is identical to Eq. (36) with Eq. (35). The subtraction
of the feature flow field is an approach that was previously proposed
by Weinkauf et al. [47] to extract vortices in unsteady flows, see
Eq. (10). This sheds new light on their solution: The subtraction
of the feature flow field locally transforms the vector field into
the most-steady reference frame among all equal-speed translating
references frames. Thus this is proof that, if vortices perform
equal-speed translations, their method finds the optimal frame.

4 OPTIMAL FLOow DECOMPOSITION

Above, we described methods to calculate an optimal reference
frame for a given class of possible reference frame transformations.
By rearranging the expressions of the optimal vector fields in
Egs. (19), (27), (32) and (36), we can see that any given vector

field v can be decomposed into two fields V and Vv, see Fig. 2:
V=V+V (38)

Here, Vv contains the vector field in the near-steady local reference
frame and v contains the ambient transport. This decomposition

i

ambient v

I

near-steady v+

originalv. =
Fig. 2: Vector field decomposition in the BOUSSINESQ flow. The
original field v is decomposed into a near-steady part V that shows
vortices, and an ambient part v that depicts the reference frame
movement. Here, shown for affine invariance, using U = 212,

is generally possible, which was previously shown only for the
special case of objectivity [10]. The ambient part v shows the
spatial smoothness of the ambient motion, which reveals the spatial
smoothness of the optimal reference frame. In the next section, we
use the optimal near-steady reference frame to extract vortices.

5 VORTICES IN OPTIMAL REFERENCE FRAMES

The previous sections demonstrated how any vector field can be
locally transformed into a distinguished optimal reference frame
and how this leads to an optimal flow decomposition. Among
all reference frame transformations of a certain type, e.g., affine
transformations, the one is chosen in which the temporal derivative
is minimized. Any affine transformation of the input field will be
removed by our optimization, thus all measures that are computed
in the optimal frame become affine-invariant, i.e., invariant under
affine transformations of the observer.

Same as [10], we apply standard vortex measures in the optimal
frame using the optimal vector field ¥ and its derivatives J, V;, a.

Vortex Corelines

A necessary condition for swirling motion is the presence of
complex eigenvalues in the Jacobian J. In 2D, optimal vortex
corelines can be tracked as paths of critical points in V and in
3D, optimal vortex corelines can be extracted by applying Sujudi-
Haimes [41] with the parallel vectors operator [28]:

2D: v=0 3D: Jv ||V (39)

These techniques usually only work in steady flows. Since we
observe unsteady flows in the optimal near-steady reference frame,
our method extracts the vortex corelines of pathlines.

Vortex Regions

In the optimal reference frame, region-based methods such as Ao
can be applied as well. Using the optimal Jacobian matrix J, we
compute a new optimal vorticity tensor €. Using this, we define a
new (hyper-)objective Ao measure:

J-J7T

X2(S2+62) <0 B

with

(40)



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

In previous work, Giinther et al. [10] also considered other region-
based methods such as vorticity in the optimal frame, which is
analogue for the hyper-objective methods. In fact, any vortex
measure that is based on velocity and its derivatives can be observed
in an optimal reference frame using our method.

6 IMPLEMENTATION

Our method is a pre-process prior to standard flow visualization
techniques. Thus, it fits well into existing visualization pipelines.
We implemented our method as a vtkImageAlgorithm filter for
VTK [37], which is included for the 2D case in the supplemental
material. The input to our method is an unsteady vector field
v(x, t) and the output are the vector field V and its derivatives
J, V¢, a in the optimal reference frame. The computation of the
optimal reference frame is local and easy to parallelize, since each
voxel is processed independently in both space and time. The
algorithm requires to iterate the data set twice, which is shown in
Alg. 1 for the 2D case. The algorithm is analogue for 3D domains.

First Pass: Discretization and Summed Area Tables

Our method requires a discretization of the domain. On numerical
data, we use the grid on which the flow was simulated or measured.
For analytic flows, we subdivide the domain uniformly into 2—-8
million voxels, depending on the data set.

To setup the linear system, we compute IM at each grid point.
The computation of M depends on the chosen type of reference
frame invariance, e.g., Eqs. (14) and (16) for affine invariance. In
Section 3, we highlighted the respective formulas for M with boxes
that have the same color as the corresponding corelines that are
visualized in the remainder of the paper. Afterwards, we compute
for every grid point MTM and M T v, and generate a summed
area table (SAT) for both on the fly, which we name M and .
SATs are data structures that allow us to efficiently calculate the
sum over arbitrary rectangular domains in constant time, which
we will use to integrate MTM and MTv, in a neighborhood
U, cf. Eq. (18). A SAT data structure is built in linear time and
can be reused for all grid points. Note, however, that SATs are
only available on regular grids. If the data is given on unstructured
grids, MTM and MTv, are integrated traditionally by iterating
the neighborhood for each grid point, which is linear in the number
of grid points inside the neighborhood region and therefore output-
sensitive. The remaining steps of the pipeline remain unchanged.

Second Pass: Linear Problem and Optimal Frame

Using the SATs M and JA}, we compute M and ¥, which is an O(1)
operation, since we only need to look up and combine the SAT
values at the corners of the neighborhood region U. Afterwards,
we solve M u = ¥y for each grid point to compute the optimal
reference frame parameters U, cf. the linear system in Eq. (17). For
this, we use a Householder QR decomposition with full-pivoting.
Given the optimal parameters U, we compute and store the
vector field ¥ and its derivatives J, ¥;, @ in the optimal reference
frame. Again, the formulas depend on the chosen type of reference
frame invariance. We highlighted the formulas throughout Section 3.
For affine invariance, we use Egs. (19)—(22). In the optimal
reference frame, we apply standard techniques to compute frame-
invariant vortex corelines and vortex regions, cf. Section 5.

Input : unsteady flow v(x, ), time 7, neighborhood U
Output : flow in optimal frame V and derivatives J, v, a

// initialize arrays for SATs
M0, {Vi;} <03

// for each grid point:
forall (7, j) do

compute M, y and SAT

M « Eq. (14) ; // with v(xi;,7), J(xij,7)
Yy Gvi(xigT) s

// compute SATs

Mz] « MT™™M + M, 1, +M” 1= M\i—l,j—l ;
yZJ — MTy+yz 1,7 +yz,J 1= yz 1,7—15

end

// for each grid point:
forall (7, j) do

// compute neighborhood sum from SAT

M FM\HU,]‘JrUvLM\FUfl,jfol*/TA\HU,J;UJ 7K/l\i—U—l,j+U
3\’ 4*371’+U,_7'+U + j]\i—U—l,jfol - JA)'H—U,]‘—U—I - 371‘7U—1,_7’+U 5
// linearly solve for parameters

setup system and solve

u+— M\y;

// compute optimal frame

Vv < Eq. (19); // with @, v(xi;,T)
J < Eq. (20) ; // with @, J(xi;,7)
Vi — Eq (21) 5 // with Mz"’j , u, Vt(Xi,]‘,T)

end
Algorithm 1: For an unsteady vector field v(x, t) and time T,
we compute the optimal reference frame v and its derivatives
J, V¢. The algorithm is shown for affine invariance and is the
same for similarity invariance and objectivity, when using the
respective equations for M and v, J, Vi, a from Section 3.

7 RESULTS

In the following, we compare Galilean invariant, objective and
hyper-objective (similarity invariant and affine invariant) techniques
in terms of energy residual, numerical robustness and extraction
time. In 2D, the extraction time for the entire space-time volume is
measured. In 3D, the time is measured for a single time step.

71

First, we systematically test our method in a number of analytic
2D vector fields, which contain various vortex movements. When
increasing the complexity of the vortex movement, the frame
invariant techniques will one-by-one start to fail. Affine invariance
is the most general method and will be able to handle all cases.

Analytic 2D Flows

7.1.1 Four Rotating Centers (Objectivity)

As soon as a vortex moves on a non-linear path, such as on a circle,
Galilean invariant methods [12], [21], [47] do not work anymore.
This can be seen in the FOUR CENTERS flow in Fig. 3. Giinther et
al. [11] defined the steady flow in the domain D = [—2,2]*:

v(z,y) = (—m(2y2 — l)e—zz—y2>

which contains two CW-rotating vortices at (+271/2, £271/2)
and two CCW-rotating vortices at (27 1/2, F271/2). We observe
the flow for time T' = [0, 27] in a reference frame that rotates
CCW with unit speed around the origin xg = 0. We discretized

(41)
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Average residual: 4.23 x 107
Average condition: 1.62 x 10°
Computation time: 7.29 s

(b) Objectivity

Average residual: 0 (local)
Computation time: 0.68 s

(a) Galilean invariance ><

Average residual: 3.38 x 107
Average condition: 2.33 x 10°
Computation time: 11.79 s

Average residual: 2.2 x 107
Average condition: 1.7 x 107
Computation time: 26.91 s

(c) Similarity invariance (d) Affine invariance

Fig. 3: In the FOUR CENTERS flow, vortices rotate with equal speed around a common point. Galilean invariance is not enough. U = 212.

Average residual: 2.94
Average condition: 9.79 x 10°
Computation time: 10.62 min

(b) Objectivity <

Average residual: 0 (local)
Computation time: 5.12 min

(a) Galilean invariance ><

Average residual: 1 X 10710
Average condition: 2.17 x 10%
Computation time: 10.63 min

Average residual: 0
Average condition: 1.22 x 10¢
Computation time: 10.5 min

(c) Similarity invariance (d) Affine invariance

Fig. 4: Hyper-objective methods correctly extract vortices in the SIMILARITY HELIX flow. Ground truth is shown in black, U = 412,

Average residual: 28.78
Average condition: 8.01 x 10°
Computation time: 28.6 min

(b) Objectivity <
Fig. 5: In the AFFINE HELIX flow, only the affine invariant method finds the correct reference frame. Here, shown for U = 412,

Average residual: 0 (local)
Computation time: 14.6 min

(a) Galilean invariance ><

the transformed vector field onto a regular grid with 1283 voxels.
Compared to the previous and the next two examples, the residual
of all but the Galilean invariant method is in the order of 1074,
This deviation from zero stems from the discretization and the
numerical finite differences that are needed to setup matrix M.
This shows us that, even though this case should have a perfect
solution, numerical inaccuracies give us a residual in this order.
Visually, these differences are not visible.

7.1.2  Similarity Helix (Similarity Invariance)

The next data set is constructed by transforming the co-gradient of
the stream function s(z,y) = 10z(1 —x)(1+2)(1/2—y)(1/2+

Average residual: 14.06 Average residual: 1.8 x 107°
Average condition: 2.98 x 10°

Computation time: 29.06 min

Average condition: 1.19 x 108
Computation time: 28.88 min

(c) Similarity invariance >< (d) Affine invariance

y) with the following time-dependent domain transformation:
x*\ _ [cos(t) cos(4t) — sin(4t)
<y> - (sin<t>) +alt) [ <s1n<4t>) " y( cos<4t>>}

(42)
with a(t) = sin(10t)/4 + 1. We refer to [11], [22] for details on
domain transformations of vector fields. We visualize the vector
field in the spatial domain D = [—2,2]? and for time T =
[0, 27] in Fig. 4. The space-time domain was discretized onto a
128 x 128 x 256 grid, and we set U = 412. The ground truth
corelines are shown as black curves. The minimizer of the objective
method is close to the ground truth, but does not reach it as well
as the hyper-objective methods, which can be seen by the residual.

The symbolic evaluation of this analytic transformation is quite
slow, which led to a computation time that is significantly higher
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than the results demonstrated later on numerical vector fields.

7.1.3 Affine Helix (Affine Invariance)

The last example shows a vector field for which only the affine in-
variant method produces the correct result. The flow is constructed
by analytically transforming the co-gradient of the same stream
function s(z,y) = 10z(1 — z)(1 + 2)(1/2 — y)(1/2 + y), but
with the time-dependent domain transformation:

() = (i) + 5 (i) + £ - 50650

(43)
Fig. 5 shows all methods in the spatial domain D = [—1,1]? and
in the temporal domain 7' = [—1,1] for U = 412. The vector

field was discretized onto a space-time grid with 128 voxels. As
in all other examples, both the condition number and the extraction
time increase with higher degree of frame invariance. The Galilean
invariant, objective and similarity invariant approach do not find
the ground truth coreline, which is shown as black curve.

7.2 Numerical 2D Flows

In the following, we apply our optimization-based vortex coreline
extractors to four numerical 2D vector fields.

7.2.1 2D Cylinder

The 2D CYLINDER data set contains a cylinder flow with Reynolds
number Re = 160 and it is given on an unstructured grid. Behind
the obstacle, a von-Karman vortex street forms. We used VTK to
calculate the derivatives, resampled the flow and its derivatives onto
a regular grid (160 x 20) and calculated the optimal frame on the
regular grid. In Fig. 6, we show the vortex cores as critical points
in the optimal reference frame for all types of frame invariance.
For each vortex core we map the swirling strength (magnitude of
the imaginary part of the complex-conjugate pair of eigenvalues) to
transparency to distinguish between weak and strong vortices. The
Galilean invariant method can be expressed as: v4+J 1 v; = 0, cf.
Eqgs. (35) and (36). The inverse of the Jacobian might be sensitive to
noise, depending on the condition of J. A local method such as the
Galilean invariant one might therefore produce noisy results, while
the other three methods (objectivity, similarity invariance and affine
invariance) all have an inherent smoothing due to the neighborhood
size U = 112. The results are visually similar, since vortices
move with almost constant speed in a constant direction, which
is a kind of movement that is included in all compared invariance
classes. However, affine invariance has again the smallest energy
residual, as it can compensate for small spatially-varying movement
differences, caused by real motion, noise or resampling artifacts.

7.2.2 Boussinesq

The BOUSSINESQ flow contains an unsteady convection simulation
that develops around a heated cylinder. The vector field is
discretized onto a space-time grid with 100 x 300 x 1601 voxels.
As in the example before, we extract the corelines for all methods
and map the swirling strength to transparency in Fig. 7. Here, for
U = 212. In this flow, vortices move fairly slowly. The Galilean
invariant method is sensitive to noise, whereas the optimization-
based approaches give similar results. Only minor differences
are observable in the weak vortices. This is explained by the
decomposition v = ¥V + v in Eq. (38), which shows that the
ambient movement v of a vortex adds to the flow structures in v
(flow in near-steady frame) to produce the observed field v. If the
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ambient movement Vv is fast enough, it overshadows the structures
in Vv, hiding the features from our view. However, the faster a vortex
rotates, i.e., the larger the magnitude of Vv, the smaller is the impact
of ambient transport v. Thus, if vortices move slowly compared
to their rotational speed, they are detectable with every class of
invariance. As shown in Fig. 7, all optimization-based methods
show agreement on stronger vortices. Weak vortices, on the other
hand, are easily overshadowed by ambient motion Vv and for them
the right choice of reference frame invariance is crucial. In this
example, affine invariance outperforms all other techniques in terms
of the lowest energy residual, but this is bought at the expense of
an increased condition number and with higher computation time.

7.2.3 Centrifugal Pump

The CENTRIFUGAL PUMP flow contains a numerical simulation
with the DES turbulence model. The reference frame rotates with
the blades, and the space-time domain was resampled onto a
512 x 512 x 80 grid. We extracted vortex corelines with all
optimization-based approaches and visualize them in space-time
in Fig. 8 for U = 212. A common quality measure of vortex
corelines [11] is the absolute value of the dot product between
normalized coreline tangent and normalized pathline tangent in
space-time, since ideally, corelines should follow pathlines. We
color-code this tangent alignment and map the swirling strength
(imaginary part of complex eigenvalues) to the coreline radius
to emphasize strong vortices. Coreline segments with a tangent
alignment > 0.1 are removed. Affine invariance produced the best
corelines both in terms of tangent alignment and lowest residual.

7.2.4 Moving Obstacle

The MOVING OBSTACLE data set contains a numerical simulation
of an incompressible liquid that is confined by a rectangular domain
and that is stirred into motion by an obstacle that accelerates and
decelerates along a line. In the wake of the obstacle, vortices
are created, which are later deformed by the obstacle. In this
closed domain, vortices move in different directions, making it
necessary to optimize for their respective near-steady reference
frames locally. In the presence of more complex obstacle or
boundary interactions, vortex deformations are better captured in
affine-transformed reference frames, which is evident by the lower
residual. This is because of the non-uniform scale and the spatially-
varying translation that vortices undergo upon interaction with the
obstacle. In Fig. 9, the extracted vortex cores are compared for
objectivity, similarity invariance and affine invariance. Differences
among the method are visible in areas that are compressed or
deformed due to the arrival of the obstacle. The ambient flow is
closely related to the movement of the obstacle.

7.3 Parameter Study: Neighborhood U

Next, we elaborate on the size and shape of the neighborhood U'.

7.3.1 Size of Neighborhood

To explore the effect of the neighborhood size U, we vary U
and observe the average residual and the condition number for
all optimization-based approaches in the BOUSSINESQ flow in
Fig. 10. The left plot shows that the residual increases when
increasing U, which is expected. When fitting the optimal reference
transformation to a larger neighborhood U, the fit is not as tight as
for a smaller neighborhood, but the solution will be smoother and
less prone to noise. Objectivity and similarity invariance are roughly
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(a) Galilean invariance
Average residual: 0 (local)
Computation time: 3.88 min

& (b) Objectivity
Average residual: 6.73 x 10~ 2
Average condition: 2.86 X 10
Computation time: 4.39 min
(c) Similarity invariance
Average residual: 6.77 x 1072
Average condition: 8.86 x 10%
Computation time: 4.59 min
(d) Affine invariance
Average residual: 5.92 x 102
Average condition: 2.23 x 10°
Computation time: 5.22 min

Fig. 6: Galilean invariant, objective and hyper-objective vortex cores in a 2D CYLINDER flow. The swirling strength (imaginary part of

eigenvalue) is mapped to transparency to fade out weak vortices. The Galilean invariant method is sensitive to noise. Objective and
hyper-objective methods produce visually similar results, but with hyper-objectivity the energy residual is lower. With U = 112,

Avgres.: 4.84 X 10—2 Avgres.: 4.71 X 102 Avgres.: 4.02 X 102

Avg res.: 0 (local)

Comp. time: 18.16 s Avgcond.: 9.15 X 10% Avgcond.: 2.56 x 107 Avgcond.: 1.1 x 1011

Comp. time: 1.83 min Comp. time: 2.72 min

(b) Objectivity (c) Similarity inv.

Comp. time: 2.79 min

(a) Galilean inv. (d) Affine inv.
Fig. 7: In the BOUSSINESQ, all methods produce visually similar
results, with minor differences among weak vortices. The Galilean
invariant approach has no inherent smoothing and thus contains
noise. In comparison, hyper-objective methods have a significantly
smaller residual. For all critical points, the swirling strength
(magnitude of imaginary part) is mapped to transparency. U = 212,

in the same order, whereas affine invariance is always significantly
better. When increasing U, the condition number decreases, as
shown in the right plot, which is also in accordance with our
expectation. The more information we have about the neighborhood,
the better is the condition of the system. The smoothing by a
sufficiently large neighborhood size is important, since the linear
system is under-determined at a single point. The more degrees of
freedom the unknown reference frame transformation has, the more
information we need. Each additional point adds more conditions
and we need enough to fill up the rank. Selecting the neighborhood
size is a data set-dependent compromise between numerical stability
(larger U is better) and low energy residuals (small U is better).
Fig. 11 shows the affine invariant vortices and the flow in the
optimal reference frame for varying neighborhood sizes U. The
extracted vortices are very similar. Though, care should be taken
to select U not too small, since then the optimal reference frame
might be affected by noise in the data. This does not only include
numerical noise or measurement noise, but also resampling artifacts.

Avg. resid.: 5.047
Avg. cond.: 3.3 x 10°
Comp. time: 33.19 s

(a) Objectivity

Avg. resid.: 4.325
Avg. cond.: 5.4 x 10°
Comp. time: 53.40 s
(b) Similarity invariance (c) Affine invariance

Avg. resid.: 2.111
Avg. cond.: 6.6 x 10!
Comp. time: 130.2 s

Fig. 8: Space-time visualization of vortex cores in the CENTRIFU-
GAL PUMP for U = 212 (time is in view direction). The tangent
alignment (angle between vortex coreline and pathline) is color-
coded. The coreline radius is scaled by the swirling strength,
making strong vortices apparent. Aside from some long-living
vortex cores, the results are spurious in this rather turbulent flow,
but are quantitatively and qualitatively best with affine invariance.

Fig. 9: Two time steps of the MOVING OBSTACLE simulation. The
imaginary part of complex eigenvalues is mapped to transparency, v
is shown by LIC and V is shown by an arrow plot (magnitude scaled
by factor 5) for affine invariance. Here, for the local optimized
reference frames with U = 212. The obstacle influences the vortex

paths and deforms them. The average residual reduced from 12.02
(objectivity) to 11.41 (similarity) and 7.88 (affine).

The neighborhood should also be chosen in a way such that points
that are considered to belong to the same vortex, are observed in
a similar reference frame. In other words: the neighborhood size
should not contain vortices that move in different directions, i.e.,
the movement inside the region should be coherent. A visualization
of the ambient flow in comparison with the visualization of the
obtained optimal reference frame as in Fig. 2 can help to visually
guide the selection of the size of the neighborhood region.
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Fig. 10: Residual and condition for various neighborhood sizes U
in the BOUSSINESQ flow. With increasing U, the residual increases,
since the optimal frame is fit to an entire region. At the same time
the condition number improves, since more information is available
that makes the system more stable to solve. Affine invariance has
the lowest residual, but also the worst condition number, making it
numerically less stable than objectivity and similarity invariance.

Avgres:1.31 x 1072 Avgres:1.90 X 1072 Avgres:4.02 x 10~ 2 Avgres:5.55 x 102

Avg cond.: 1.29 x 1012 Avgcond.: 3.19 x 1011 Avgcond: 1.1 x 1011 Avgcond: 3.17 x 1010
@U="12 (b) U =112 (c) U =212 (d) U = 312

Fig. 11: The size of the neighborhood region U has an influence
on the numerical stability (the larger the better). At the same time,
a larger neighborhood region U increases the energy residual (the
smaller the better). The selection of U is a compromise between
numerical stability, sensitivity to noise and locality of the optimal
frame. Here, shown for the BOUSSINESQ flow. In all cases, the
computation took 2.79 min.

7.3.2 Shape of Neighborhood

We explored three different shapes for the neighborhood region U:
a square, a rotated square (diamond) and a circle, which are shown
in Fig. 12. The circle is the most natural choice, as it resembles
the appearance of vortices best. In fact, this shape produced the
best (lowest) energy residuals. The difference to (rotated) square
shapes, however, is small. A square shape is an attractive alternative,
since the integral over the neighborhood region U can be greatly
accelerated with the use of summed-area tables (SAT). For the
examples in Fig. 12, the summed area table reduced the extraction
time down to 15 — 30% for a neighborhood size of U = 212.
The performance difference will increase even further the larger
neighborhood U is chosen, since SATs allow for a constant time
calculation of an integral, after a one-time linear pre-process.

7.4 Analytic 3D Flow

We constructed an analytic 3D field, in which only the affine
invariant method extracts the correct coreline. The underlying
steady flow is a 3D extension of the example in Section 7.1.2 with
unit flow in the third dimension. The 3D rotation of the reference
frame includes a time-dependent shear component, which creates
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a spatially-varying translation that can only be removed with the
affine invariant method. The vector field is discretized onto a 1283
grid, and the reference frame is optimized for a neighborhood of
U = 813 voxels. Fig. 13 shows the optimization-based corelines
for all methods. Objectivity and similarity invariance both produces
false-positives (¢ = 0, saturated) and noisy corelines at (t = 1,
bright colors). Pathlines (gray) are traced to illustrate that only for
the affine invariant case, pathlines correctly connect the corelines.

7.5 Numerical 3D Flows

In the following, we describe applications of our method in two
numerical 3D data sets.

7.5.1 Square Cylinder

The SQUARE CYLINDER sequence is a numerical simulation in
which a von-Karman vortex street forms behind an obstacle. The
spatial domain is discretized onto a 192 x 64 x 48 grid. Fig. 14
shows our optimization-based vortex corelines in this flow for
U = 413. We also refer to the accompanying video for a time
series animation. In this flow, vortex corelines move on fairly
linear paths. We can therefore expect that Galilean invariance is a
good assumption, which is included in all higher invariance classes
as special case. Indeed, our optimization-based approaches give
all similar results except for the highly bent corelines directly in
the wake of the obstacle. In this area, vortices are created and
accelerate from zero speed to the downstream velocity. Here, the
equal-speed assumption of Galilean invariance does not hold and
we can thus expect improvements when searching for time-varying
reference frame transformations. In the wake of the obstacle, the
affine invariant method favors a coreline that has lower curvature.
In turn, less artifacts occurred in the time series.

7.5.2 Swirling Jet

The SWIRLING JET flow contains the periodic spatio-temporal
evolution of a turbulent swirling jet undergoing vortex breakdown.
This vector field was resampled onto a 201 x 220 x 201 voxel
grid. Fig. 15a displays an FTLE field. The in-flow is coming from
below in a circular pattern that generates a recirculation bubble.
Behind this bubble and in the periphery helical vortex structures
arise that are transported down the flow. The Galilean invariant Ao
in Fig. 15b indicates a vortex tube in the center, which is due to
the relative rotation of the entire system. Particles however, are not
actually rotating around each other. The objective Ao of Giinther et
al. [10] in Fig. 15c views the flow in the optimal rotating reference
frame. In this frame, Xg does not detect the vortex tube, indicating
that the rotating motion stems from the ambient motion v and is
not a feature detectable in the steady frame V. Our affine-invariant
g in Fig. 15d handles the shear part of the outer vortex helix better,
which leads to a helix that aligns better with the FTLE structures.
In addition, the last helix loop is better preserved. This is indication
for a spatially-varying ambient motion that is only removed by
affine invariance. This suggests that optimal reference frames pay
off especially in rotating systems that exhibit strong shear effects.

7.6 Discussion

In the following, we elaborate on the physical interpretation, steady
flows, turbulent flows, the existance of solutions, the interpretation
of the ambient flow, artificial vortices and possible extensions
including higher-order methods and Lagrangian vortex measures.
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Avg residual: 0.0125  Avgresidual: 0.0121  Avg residual: 0.0116 Avg residual: 0.0120

(a) Objectivity (square, diamond, circle)

Avg residual: 0.0116

(b) Similarity invariance (square, diamond, circle)
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Avg residual: 0.0112 Avg residual: 0.0093

Avg residual: 0.0091

Avg residual: 0.0087

(c) Affine invariance (square, diamond, circle)

Fig. 12: The shape of the neighborhood region U has a small effect on the extraction result, as shown here for the BOUSSINESQ flow.
We experimented with three different shapes (square, diamond and circle), and report the obtained average residuals. Here, U = 212

noisy coreline

" /[;athée/

/ end points £y

Avg residual: 1.8 x 108

Avg residual: 33.9 Avg residual: 27.9

Avg condition: 1.23 X 1016 Avg condition: 1.58 X 1016 Avg condition: 8.54 X 1016

Computation time: 14.5 min
(a) Objectivity

Fig. 13: Vortex corelines in an ANALYTIC 3D flow, U = 813.
Ideally, pathlines (gray lines) should connect corelines that were
extracted at different time steps (t = 0 saturated, ¢ = 1 bright
colors). Only affine invariant corelines are reached exactly. The
end points of pathlines (seeded at ¢ = 0 and traced until £ = 1)
are shown as small spheres. The objective and similarity-invariant
approach extract a number of false-positive corelines at ¢ = 0 and
produce noisy corelines at ¢ = 1.

Computation time: 14.6 min

(b) Similarity invariance

Computation time: 21.7 min

(c) Affine invariance

7.6.1 Physical Interpretation

For a physical interpretation of affine invariance, imagine a vortex
in a pipe, moving along the boundary for a fixed observer. Near the
boundary, the flow is slower, creating shear that stretches the vortex.
Nevertheless, the vortex flows forward, but its particles move at
different speed. This forward motion is added to the observed
velocity field and it is this difference that is removed, when
transforming into the steady reference frame. Any overshadowing,
whether it is by a translation, a rotation or shear, will hide the
structures that can be made visible in the steady frame. Another
way to look at shear is to consider it as a spatially-varying
translation. Galilean invariance and objectivity assume spatially-
constant translations. To remove spatially-varying motions, we
consider the even more general class of affine transformations.

7.6.2 Consistency with Steady Case

A plausibility check for any technique that operates on unsteady
flows is to consider what happens when vector field v is steady,
i.e., v¢ = 0. In this case, none of the optimization-based methods
will change the reference frame, since with vy = 0 in Eq. (18) we

Objectivity (o)  Similarity inv. ()  Affine inv. (o)

Average residual: 3.73 x 1072 3.76 x 1072 3.69 x 1072
Average condition: 4.41 x 108 4.66 x 10® 2.99 x 10°
Computation time: 3.86 sec 4.45 sec 12.6 sec

Fig. 14: Objective (o), similarity invariant (e) and affine invari-
ant () vortex corelines in the SQUARE CYLINDER flow. In this
flow, vortex cores move fairly linear and thus differences are small,
except for the highly bent corelines directly in the wake of the
cylinder. As a reference, particles are shown in areas of high
vorticity, indicating that the corelines are indeed centers of rotating
particle motion. U = 413.

2

(a) FTLE

(b) Galilean inv. Ao (c) Objective Ao (d) Affine inv. A2
Fig. 15: Vortices in a SWIRLING JET. (a) shows an FTLE field,
which provides a first impression of the helical vortex structures.
(b)-(d) depict Ao in different reference frames. Here, with U = 412,

have y = 0 in Eq. (17). The optimal U that solves Eq. (17) is thus
u = 0, and hence the transformed vector field in Egs. (19) becomes
V = v, which holds for the all optimization-based invariance types.

7.6.3 Turbulent Flows

A characteristic property of turbulent flows is the presence of
differently sized vortices, due to the large scale to small scale
energy cascades [7]. Since our method fits optimal reference frames
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to a local and constant neighborhood, the reference frame cannot
perfectly adapt to small scale details, which is measurable by the
non-vanishing residuals. Fitting to a neighborhood has a smoothing
effect, which on the other hand provides robustness to noise.

7.6.4 Existence of Unique Solution

As in [10], a unique solution cannot be found if there are symmetric
solutions, e.g., if the flow is rotationally-symmetric. For objectivity
and similarity invariance, linear vector fields do not provide enough
information to produce a full rank system in Eq. (17), no matter
how large neighborhood U. Affine invariance has more degrees
of freedom and does not have a unique solution for linear and
quadratic vector fields. Other techniques such as FTLE are similarly
not applicable in “too simple” vector fields. In real-world flows,
we did not encounter such cases.

7.6.5 Interpretation of Ambient Flow

If vortices perform equal-speed translations (as it is almost the case
in a von-Kérmadn vortex street), then the ambient flow v in Eq. (38)
is constant. If vortices, on the other hand, move on circular paths,
then v contains a perfect center flow, which then corresponds to
the rotation-invariant feature flow field [11]. For (hyper-)objective
methods no such a-priori knowledge about the shape of the ambient
field’s streamlines is available. However, vortices move coherently
and thus all points inside a vortex should be observable in nearly the
same steady reference frame. Thus, the ambient flow v should be
smooth within a coherent vortex. By visualizing v, the smoothness
can be observed, as shown in Fig. 2 for the BOUSSINESQ flow.

7.6.6 Artificial Vortices

Individual time slices may contain artificial vortices only if the
vector field is viewed in a reference frame, in which the flow is
still unsteady. To extract the correct vortices, we transform the
flow into an as-steady-as-possible reference frame. The advantage
of our method is that the risk of artificial vortices can always be
quantified by the residual. Using the new hyper-objective methods,
the residual was always reduced and the result thus improved.

7.6.7 Incompressibility in Optimal Frames

The observation in a hyper-objective reference frame does not
preserve the divergence, which is necessary to account for the
scaling of vortices. Vortices are growing by gradually propelling
more and more fluid material into a rotating motion. As an example,
consider the 2D cylinder in Section 7.2.1. Each vortex feeds from
the fluid that flows around the cylinder, until the vortex is large
enough to detach and get carried away. In unsteady flows vortices
grow. In steady flows, however, they do not. Since we view unsteady
flows in a steady reference frame, the growth must be accounted
for, making the observation necessarily not divergence-free.

7.6.8 Extension to Higher-Order Methods

We experimented with first-order vortex coreline extractors. Higher-
order extractors [33] could be applied as well, since all spatial
derivatives of v become reference frame invariant in the optimal
frames. This would open the path to bent corelines that move on
arbitrary paths, which constitutes another class of vortices that has
previously been inaccessible.
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7.6.9 Extension to Objective Lagrangian Vortex Measures

As in [10], frame invariant region-based counterparts to A
and vorticity can be calculated in our optimal reference frames.
Integrating these measures along pathlines of the original field v
leads to Lagrangian frame invariant vortex measures. Lagrangian
measures are a tool to investigate the coherence of a vortex over
time, which recently gained more attention in the literature [16].

8 CONCLUSIONS

When observing fluids and the features therein, the way the observer
moves should not have an impact on the result. Recently, Giinther
et al. [10] proposed a technique that transforms an observer into a
distinguished reference frame in which the flow appears as steady
as possible. In this frame, feature extraction becomes independent
of the original reference frame, which ultimately allowed for an
objective observation of many standard vortex extraction techniques.
In this paper, we developed a deeper theoretical understanding
of the varying degrees of freedoms that might be considered,
when searching for a distinguished reference frame. Starting
from general affine transformations, we gradually decreased the
degrees of freedom, leading us to similarity transformations
(rotation, translation and uniform scale), and objectivity, which are
included as a special case. Finally, we have shown for Galilean
transformations that the optimal frame is found by subtraction of
the feature flow field, which sheds new light on the properties of
previous techniques [47]. We have shown that the optimal reference
frame transformation has lower residuals (performs better) if more
degrees of freedoms are added, i.e., affine invariance generally
performed best. The extraction time and the condition number
increase, however, making affine invariance numerically less stable,
which is due to the higher number of unknowns (degrees of
freedom). We showed extraction results for various neighborhood
shapes and sizes and studied the effect of the neighborhood size
on the condition number and on the residuals. The smaller the
neighborhood size, the smaller is the residual, but also the more
the reference frame fits to noise. Thus, the neighborhood should be
big enough to smooth out noise and to have sufficient numerical
stability. Increasing the neighborhood size spatially smoothes the
obtained reference frame. Inside a vortex, points move coherently
and are thus observed in a similar reference frame. Coherence of the
reference frame is the key to selecting a suitable neighborhood size.
The neighborhood size may be smaller or bigger than the expected
size of vortices, as long as the particles inside the neighborhood
region move coherently. In the future, we would like to explore
other regularizers for our energy, and apply other feature extraction
techniques in the optimal reference frame.

APPENDIX A

AFFINE TRANSFORMATION OF A VECTOR FIELD

Consider an affine transformation:
x*=R(t) x+c(t) ,

t"=t—a (44)

where R(t) is a general invertible matrix, c(¢) is a translation
vector and « is a constant. For brevity we denote R(t) as R.
Applying Eq. (44) transforms a vector field into a new frame:

vi =R (v+H;x+k) (45)
JJ=R(J+H) R (46)
a*=R(a+2H;v+Hyx+ky) 47)
vi=R (v —JH1x+H;v—Jk; + Hyx+k3) (48)
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with

H =R 'R, H,=R 'R, H;=H,—H?> 9
ki=R'¢, ko=R'¢, ksi=k,—Hi ky (50
where R = %, R = %, ¢ = %, ¢ = %. The proof of

Egs. (45)—(48) is analogue to the proof of objectivity in [10].

APPENDIX B
PROOF OF AFFINE INVARIANCE

This proof follows [10], where objectivity was proven. Let w be
the observation of v under an arbitrary frame (P, d), where P is
a general invertible matrix and d is a translation vector.

Further, let W be the observation of w under its optimal frame
(R, c). To show the affine invariance of Vv, we follow Definition 1

and show that the optimal frames of v and w are related by:
w=PvV S

To find W, we search for its optimal frame (R, ¢) that minimizes

/ lw?[2dV = min. 52)
PU+d

From the perspective of v, the optimal frame of w is reached by
the transformation: x* = R (Px 4 d) + c. Thus, w} can be
expressed from the perspective of v, which allows us to use v;:

w; =R (v, —Mu) (53)
where x* = Rx+cwithR=RP, ¢c=Rd+ ¢, and
—vec(Hy)
_ k,
u= ks, (54)
—vec(Hs)

Since R and R are affine transformations, they preserve collinear-
ity. Thus, the temporal derivatives w; and v; in Egs. (13) and
(53) have the same minimizer, i.e., @ minimizing (52) and @
minimizing (12) are identical. Given the parameters U = u, we
compute V and W in the optimal reference frame:

R(v+H;x+k)
w = R(v+H x+k)

v =

(35)
(56)

and from this we get for R =1thatw = PV, i.e., Eq. (51). The
affine invariance of J, v, a is shown in a similar way.

APPENDIX C
SIMILARITY INVARIANCE

We derive matrix M for similarity transformations (rotation,
translation and uniform scale). We consider transformations:

X' = s(t) Q) x +clt)

cf. Eq. (23). For brevity we denote Q(t) as Q. Applying this
transformation gives the vector field and its differential properties
in the new reference frame:

t'"=t—a (57)

vi=s5Q (v+Hix+ky) (58)
JF=QUJ+H,) Q" (59)
a*:sQ(a—|—2H1v+H2x—|—k2) (60)

vi=sQ (vi —JH;x+H;v—-Jk; + Hyx+k3) (61)
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with
. $
H1=QTQ+;I (62)
H2=QTQ+2;QTQ+;I (63)
, Hs=H,—H/’ (64)
klngTé, k2=;QTé7 ks=ko —Hi ki (65

: dQ A aQ - dc = dé - ds = _ ds
whereQ:d—?,Q:d—?,CZd—‘t’,c:d—?,s:d—:,s:d—zare

the time derivatives of Q, s, and c. The proof of Egs. (58)—(61) is
analogue to the proof for objectivity in [10]. We rewrite Eq. (61):

vi =Q (vi —Mu) (66)
with the 3 x 14 matrix M in 3D
M=(-JX+V,J, X, I, -Jx+v, x) (67)
with X = sk(x) and V = sk(v), and the 14-vector u
u; ap(QTQ)
u2 . kl .
) TA _ (OTO)2
Uy 7k3
Us —é
o st
In 2D, M is a 2 X 8 matrix
M= (-Jx,+v,,J,x,,I, -Ix+v, x) (69)

with x, = (—y,2)T, v, = (—v,u)", and u is an 8-vector.

Similar to [10], we search for Q, Q, 3, &, ¢, ¢ to minimize the
magnitude of the temporal derivative
/ |vi||?dV — min (70)
U
within a local neighborhood by using Egs. (17) and (18). Let
u = (U, Uy, U3, Uy, Us, Ug) © be such an optimal u. Then, the
new fields in the locally optimal reference frame are

(71)
(72)

which follows from insertion of Uy, U2, us into Egs. (58)—(59).

ACKNOWLEDGMENTS

The 2D CYLINDER data set and the BOUSSINESQ flow were
simulated with Gerris Flow solver [30]. The resampled version
of the latter was kindly provided by Tino Weinkauf. The CEN-
TRIFUGAL PUMP is courtesy of the Institute of Applied Mechanics,
Clausthal University, Germany and was made available by Andreas
Lucius for the IEEE Visualization Contest 2011. We thank Vinicius
C. Azevedo for providing the cut-cell solver [2], used for the
MOVING OBSTACLE flow. The resampled version of the SQUARE
CYLINDER flow was provided by Tino Weinkauf and the simulation
was computed by Camarri et al. [6]. The SWIRLING JET simulation
was provided by Moritz Sieber from TU Berlin, Germany, who we
would also like to thank for the discussions on the jet flow. All
visualizations were rendered with the visualization tool Amira [40].



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

REFERENCES

(1]
[2]

(3]

(4]

(51

(6]

(71
(8]

[9]

[10]

[11]

[12]
[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

(23]

[24]

(25]

[26]

[27]

(28]

G. Astarita. Objective and generally applicable criteria for flow classifica-
tion. Journal of Non-Newtonian Fluid Mechanics, 6(1):69-76, 1979.

V. C. Azevedo, C. Batty, and M. M. Oliveira. Preserving geometry and
topology for fluid flows with thin obstacles and narrow gaps. ACM Trans.
Graph., 35(4):97:1-97:12, July 2016. doi: 10.1145/2897824.2925919

H. Bhatia, G. Norgard, V. Pascucci, and P.-T. Bremer. The Helmholtz-
Hodge decomposition—A survey. /EEE Transactions on Visualization and
Computer Graphics, 19(8):1386-1404, 2013.

H. Bhatia, V. Pascucci, R. M. Kirby, and P.-T. Bremer. Extracting
features from time-dependent vector fields using internal reference frames.
Computer Graphics Forum (Proc. EuroVis), 33(3):21-30, 2014.

R. Bujack, M. Hlawitschka, and K. I. Joy. Topology-inspired Galilean
invariant vector field analysis. In IEEE Pacific Visualization Symposium,
pp. 72-79, April 2016. doi: 10.1109/PACIFICVIS.2016.7465253

S. Camarri, M.-V. Salvetti, M. Buffoni, and A. Iollo. Simulation of the
three-dimensional flow around a square cylinder between parallel walls at
moderate Reynolds numbers. In XVII Congresso di Meccanica Teorica ed
Applicata, 2005.

A. J. Chorin. Vorticity and turbulence, vol. 103. Springer Science &
Business Media, 2013.

R. Drouot and M. Lucius. Approximation du second ordre de la loi de
comportement des fluides simples. lois classiques déduites de lintroduction
dun nouveau tenseur objectif. Archiwum Mechaniki Stosowanej, 28(2):189—
198, 1976.

T. Gilinther. Opacity Optimization and Inertial Particles in Flow
Visualization. PhD thesis, University of Magdeburg, June 2016.

T. Giinther, M. Gross, and H. Theisel. Generic objective vortices for
flow visualization. ACM Transactions on Graphics (Proc. SIGGRAPH),
36(4):141:1-141:11, 2017.

T. Giinther, M. Schulze, and H. Theisel. Rotation invariant vortices for
flow visualization. IEEE Transactions on Visualization and Computer
Graphics (Proc. IEEE SciVis 2015), 22(1):817-826, 2016.

T. Giinther and H. Theisel. Vortex cores of inertial particles. IEEE Trans.
on Vis. and Comp. Graph. (Proc. IEEE SciVis), 20(12):2535-2544, 2014.
T. Giinther and H. Theisel. The state of the art in vortex extraction.
Computer Graphics Forum, 37(6):149-173, 2018.

G. Haller. An objective definition of a vortex. Journal of Fluid Mechanics,
525:1-26, 2005.

G. Haller. Lagrangian coherent structures. Annual Review of Fluid
Mechanics, 47:137-162, 2015.

G. Haller, A. Hadjighasem, M. Farazmand, and F. Huhn. Defining coherent
vortices objectively from the vorticity. Journal of Fluid Mechanics,
795:136-173, 2016.

J. C. R. Hunt. Vorticity and vortex dynamics in complex turbulent flows.
Transactions on Canadian Society for Mechanical Engineering (Proc.
CANCAM), 11(1):21-35, 1987.

J. Jeong and F. Hussain. On the identification of a vortex. Journal of
Fluid Mechanics, 285:69-94, 1995.

J. Kasten, 1. Hotz, B. R. Noack, and H.-C. Hege. On the extraction of
long-living features in unsteady fluid flows. In Topological Methods in
Data Analysis and Visualization, pp. 115 — 126. 2011.

J. Kasten, J. Reininghaus, 1. Hotz, and H.-C. Hege. Two-dimensional
time-dependent vortex regions based on the acceleration magnitude. /EEE
Trans. on Vis. and Comp. Graph. (SciVis), 17(12):2080-2087, 2011.

J. Kasten, J. Reininghaus, H. 1., H.-C. Hege, B. R. Noack, G. Daviller,
and M. Morzynski. Acceleration feature points of unsteady shear flows.
Archives of Mechanics, 68(1):to appear, 2016.

A. Kuhn, C. Rossl, T. Weinkauf, and H. Theisel. A benchmark for
evaluating FTLE computations. In Proc. IEEE Pacific Visualization
Symposium (PacificVis 2012), pp. 121-128. Songdo, Korea, 2012.

R. Laramee, H. Hauser, L. Zhao, and F. Post. Topology-based flow
visualization, the state of the art. In Topology-based Methods in
Visualization, pp. 1-19. Springer Berlin Heidelberg, 2007.

H. J. Lugt. The dilemma of defining a vortex. In Recent developments in
theoretical and experimental fluid mechanics, pp. 309-321. 1979.

R. S. Martins, A. S. Pereira, G. Mompean, L. Thais, and R. L. Thompson.
An objective perspective for classic flow classification criteria. Comptes
Rendus Mecanique, 344:52-59, 2016. doi: 10.1016/j.crme.2015.08.002
A. Okubo. Horizontal dispersion of floatable particles in the vicinity
of velocity singularities such as convergences. Deep Sea Research and
Oceanographic Abstracts, 17(3):445-454, 1970.

T. Peacock, G. Froyland, and G. Haller. Introduction to focus issue:
Objective detection of coherent structures. Chaos, 25(8):087201, 2015.
R. Peikert and M. Roth. The “parallel vectors” operator — a vector field
visualization primitive. In Proc. IEEE Visualization, pp. 263-270, 1999.

[29]
[30]

[31]

(32]
[33]

[34]

[35]

[36]

(371
[38]
[39]

[40]

[41]

[42]
[43]
[44]

[45]

[46]

[47]

[48]

[49]

14

A. E. Perry and M. S. Chong. Topology of flow patterns in vortex motions
and turbulence. Applied Scientific Research, 53(3):357-374, 1994.

S. Popinet. Free computational fluid dynamics. Cluster World 2, (6),
2004.

F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch. The
state of the art in flow visualisation: Feature extraction and tracking.
Computer Graphics Forum, 22(4):775-792, 2003.

S. K. Robinson. Coherent motions in the turbulent boundary layer. Annual
Review of Fluid Mechanics, 23(1):601-639, 1991.

M. Roth and R. Peikert. A higher-order method for finding vortex core
lines. In Proc. IEEE Visualization, pp. 143—150, 1998.

J. Sahner, T. Weinkauf, and H.-C. Hege. Galilean invariant extraction and
iconic representation of vortex core lines. In Proc. Eurographics / IEEE
VGTC Symposium on Visualization (EuroVis), pp. 151-160, 2005.

J. Sahner, T. Weinkauf, N. Teuber, and H.-C. Hege. Vortex and strain
skeletons in Eulerian and Lagrangian frames. IEEE Transactions on
Visualization and Computer Graphics, 13(5):980-990, 2007.

T. Schathitzel, J. Vollrath, J. Gois, D. Weiskopf, A. Castelo, and
T. Ertl. Topology-preserving Az-based vortex core line detection for
flow visualization. Computer Graphics Forum, 27(3):1023-1030, 2008.
W. J. Schroeder, B. Lorensen, and K. Martin. The visualization toolkit:
an object-oriented approach to 3D graphics. Kitware, 2004.

M. Serra and G. Haller. Forecasting long-lived lagrangian vortices from
their objective eulerian footprints. J. Fluid Mech., p. to appear, 2016.

M. Serra and G. Haller. Objective eulerian coherent structures. Chaos:
An Interdisciplinary Journal of Nonlinear Science, 26(5):053110, 2016.
D. Stalling, M. Westerhoff, and H.-C. Hege. Amira: A highly interactive
system for visual data analysis. In The Visualization Handbook, pp.
749-767. Elsevier, 2005.

D. Sujudi and R. Haimes. Identification of swirling flow in 3D vector
fields. Technical report, Departement of Aeronautics and Astronautics,
MIT, 1995. AIAA Paper 95-1715.

M. Tabor and I. Klapper. Stretching and alignment in chaotic and turbulent
flows. Chaos, Solitons & Fractals, 4(6):1031-1055, 1994.

H. Theisel and H.-P. Seidel. Feature flow fields. In Proc. Symposium on
Data Visualisation, pp. 141-148, 2003.

R. L. Thompson. Some perspectives on the dynamic history of a material
element. Int. Journal of Engineering Science, 46(3):224-249, 2008.

Y. Tong, S. Lombeyda, A. N. Hirani, and M. Desbrun. Discrete multiscale
vector field decomposition. ACM Trans. Graph. (Proc. SIGGRAPH),
22(3):445-452, 2003.

C. Truesdell and W. Noll. The nonlinear field theories of mechanics.
Handbuch der Physik, Band I1I/3, Springer-Verlag, Berlin, 1965.

T. Weinkauf, J. Sahner, H. Theisel, and H.-C. Hege. Cores of swirling
particle motion in unsteady flows. IEEE Transactions on Visualization
and Computer Graphics (Proc. Visualization), 13(6):1759-1766, 2007.
J. Weiss. The dynamics of enstrophy transfer in two-dimensional
hydrodynamics. Physica D: Nonlin. Phenomena, 48(2-3):273-294, 1991.
A. Wiebel. Feature detection in vector fields using the Helmholtz-Hodge
decomposition. Diploma thesis, Univ. Kaiserslautern, 2004.

Tobias Giinther joined the Computer Graphics
Laboratory (CGL) at the ETH Zirich as a postdoc-
toral researcher in 2016. He received his M.Sc.
in Computer Science in 2013 and his Dr.-Ing.
(Ph.D.) in 2016 both from the Otto-von-Guericke
University of Magdeburg. His research interests
include scientific visualization, progressive light
transport and real-time rendering.

Holger Theisel is professor for Visual Computing
at the Computer Science Department at Univer-
sity of Magdeburg, Germany. In 1994, he received
the diploma in Computer Science, in 1996 a Ph.D.
in Computer Science, and a habilitation (venia
legendi) in 2001 from the University of Rostock.
His research interests focus on flow visualization
as well as on CAGD, geometry processing and
information visualization.



