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ABSTRACT

We analyze two recently-introduced flow measured that are based on a single trajectory only: tra-
jectory stretching exponent (TSE) to detect hyperbolic (stretching) behavior, and trajectory angular
velocity (TRA) to detect elliptic (rotation) behavior. Haller et al. [2021] and Haller et al. [2022]
introduced TSE, TRA as well as the concept of quasi-objectivity, and formulated theorems about the
objectivity and quasi-objectivity of TSE and TRA.

In this paper, we present two counter-examples showing that all theorems in Haller et al. [2021] and
Haller et al. [2022] are incorrect.

Keywords Objectivity · Flow Analysis

1 Introduction

Recently, Haller et al. [2021] and Haller et al. [2022] introduced measures based on a single trajectory only. For this, the
concept of quasi-objectivity is introduced: Contrary to classical objectivity where a scalar value must be invariant under
arbitrary time-dependent Euclidian transformations, for quasi-objectivity a condition (A) is introduced, and invariance
is not demanded for all Euclidean transformations but only for those fulfilling (A). Then, Haller et al. [2021] introduced
several measures based on a single trajectory: extended trajectory stretching exponents TSE and TSE, and extended
trajectory angular velocity TRA, TRA. Haller et al. [2021] claimed that TSE and TSE are objective in the extended
phase space, and that TRA is quasi-objective in the extended phase space under a certain condition put to the average
vorticity in a certain neighborhood of the trajectory. The new measures have been applied in several follow-up papers:
Encinas-Bartos et al. [2022], Aksamit and Haller [2022].

In this paper, we show that the claims by Haller et al. [2021] concerning objectivity of TSE, TSE, TRA are incorrect. In
fact, we show by a counter-example that neither TSE nor TSE are objective in the extended phase space. Further, TRA
is not quasi-objective in the extended phase space under an averaged-vorticity-based condition.

In an erratum, Haller et al. [2022] reformulate claims about quasi-objectivity of TSE, TRA. We show by a second
counter-example that the new claims in the erratum Haller et al. [2022] are incorrect as well.

In summary, our two counter-examples show that all theorems in Haller et al. [2021] and Haller et al. [2022] are
incorrect.
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We note that the first counter-example was already published in Theisel et al. [2022], and Haller et al. [2022] was
published as a reaction on Theisel et al. [2022].

2 TSE, TRA, and objectivity

Objectivity, a concept from continuum mechanics, refers to the invariance of a measure under a moving reference
system. Let s(x, t), w(x, t), T(x, t) be a time-dependent scalar field, vector field and tensor field, respectively. Further,
let s̃(x̃, t), w̃(x̃, t), T̃(x̃, t) be their observations under the Euclidean frame change

x = Q(t) x̃ + b(t) (1)
where Q = Q(t) is a time-dependent rotation tensor and b(t) is a time-dependent translation vector. Then s,w,T are
objective if the following conditions hold, cf. Truesdell and Noll [1965]:

s̃(x̃, t) = s(x, t) , w̃(x̃, t) = QT w(x, t) , T̃(x̃, t) = QT T(x, t)Q. (2)

2.1 TSE and TRA in a nutshell

Haller et al. [2021] introduced measures for stretching and rotation that are based on single trajectories only: Extended
trajectory stretching exponents TSE , TSE, and extended trajectory angular velocity TRA, TRA. Single-trajectory
flow measures are attractive because they need minimal information to infer the flow behavior of an underlying field.
Obviously, single-trajectory measures cannot be objective in the Euclidean observation space because one may think of
a reference system moving with the trajectory, making each trajectory zero [Haller et al., 2021]. Because of this, Haller
et al. [2021] considered objectivity in an extended phase space.

Given is a C2 continuous trajectory x(t) for t ∈ [t0, tN ], its first and second derivatives ẋ(t), ẍ(t), and a positive
constant v0 accounting for a certain ratio between space and time units to make them non-dimensionalized. Considering
x(t) in an extended phase space gives for the first and second derivative of a trajectory x(t):

ẋ(t) =

(
1
v0

ẋ(t)
1

)
, ẍ(t) =

(
1
v0

ẍ(t)
0

)
. (3)

Then a local stretching measure can be defined as

tse = tsex(t),v0(t) =
ẋT ẍ

ẋT ẋ
=

ẋT ẍ

ẋT ẋ + v2
0

(4)

from which the Lagrangian measures TSE and TSE are computed by integrating tse along the trajectory:

TSEt0,tNx(t),v0
=

1

∆t

∫ tN

t0

tse dt =
1

∆t
ln

√
|ẋ(tN )|2 + v2

0

|ẋ(t0)|2 + v2
0

(5)

TSE
t0,tN
x(t),v0 =

1

∆t

∫ tN

t0

|tse| dt ≈ 1

∆t

N−1∑
i=0

∣∣∣∣∣ln
√
|ẋ(ti+1)|2 + v2

0

|ẋ(ti)|2 + v2
0

∣∣∣∣∣ (6)

with ∆t = tN − t0. The discretization in Eq. (6) samples x(t) at N + 1 time steps t0 < t1 < ... < tN .

For defining TRA, the (n+ 1)-dimensional matrix function

tra = trax(t),v0(t) =
ẋ ẍT − ẍ ẋT

ẋT ẋ
(7)

can be introduced that describes the local angular velocity. Note that tra is an anti-symmetric matrix, from which one
gets by integration along the trajectory Lagrangian measures

TRAt0,tNx(t),v0
=

1

∆t

√
2

2

∣∣∣∣∫ tN

t0

tra dt

∣∣∣∣
Fr

(8)

=
1

∆t
cos−1 ẋ(t0)T ẋ(tN ) + v2

0√
|ẋ(t0)|2 + v2

0

√
|ẋ(tN )|2 + v2

0

(9)

TRA
t0,tN
x(t),v0 =

1

∆t

√
2

2

∫ tN

t0

|tra|Fr dt (10)

≈ 1

∆t

N−1∑
i=0

cos−1 ẋ(ti)
T ẋ(ti+1) + v2

0√
|ẋ(ti)|2 + v2

0

√
|ẋ(ti+1)|2 + v2

0

(11)

2



On the Objectivity and Quasi-Objectivity of TSE and TRA A PREPRINT

where Fr denotes the Frobenius norm of a matrix. Haller et al. [2021] claimed that TSE and TSE are objective in the
extended phase space, and that TRA and TRA are quasi-objective in the extended phase space under a certain condition
put to the average vorticity in a certain neighborhood of the trajectory.

2.2 TSE, TRA, and underlying velocity fields

We recapitulate the definition of TSE from Haller et al. [2021], keeping their notation as much as possible. We start with a
single observed trajectory x(t) in n-D (n = 2, 3) for t ∈ [t0, tN ] running from x0 = x(t0) to xN = x(tN ). Further, we
assume that x(t) is a trajectory (path line) of an underlying unsteady velocity field v(x, t), i.e., ẋ(t) = dx

dt = v(x(t), t)
for all t ∈ [t0, tN ]. Following Haller et al. [2021], v is transformed into a non-dimensionalized field u by

y =
x

L
, τ = τ0 +

t− t0
T

, v0 =
L

T
(12)

where L, T, v0 are certain positive constants for a field that need to be determined by additional knowledge about
the data. Generally, the scaling factor v0 is non-zero, i.e., v0 6= 0. This transformation rephrases x(t) into the
non-dimensionalized trajectory

y(τ) =
1

L
x(t0 + T (τ − τ0)) (13)

running from y0 = y(τ0) = 1
Lx0 to yN = y(τN ) = 1

LxN with τN = τ0 + tN−t0
T . Further, it gives the non-

dimensionalized vector field
u(y, τ) =

1

v0
v (Ly, t0 + T (τ − τ0)) . (14)

Note that (14) contains a correction of a missing term 1
v0

in formula (26) in [Haller et al., 2021]. The error in formula
(26) in [Haller et al., 2021] can be seen in the following way: suppose v is a constant vector field, i.e., v(x, t) = vc.
Then formula (26) in [Haller et al., 2021] would give u(y, τ) = vc no matter how v0 is chosen. This would contradict
to the formula before (33) in [Haller et al., 2021].

Following Haller et al. [2021] further, an extended phase space Y =

(
y
z

)
is introduced by adding the additional time

dimension z. Transformation of y(τ) and u(y, τ) into this extended phase space gives

Y(τ) =

(
y(τ)
τ

)
, U(Y) =

(
u(y, z)

1

)
(15)

where Y(τ) is the trajectory in the extended phase space running from Y0 = Y(τ0) =

(
y0

τ0

)
to YN = Y(τN ) =(

yN
τN

)
, and U(Y) is the underlying vector field. The tangent vector of Y(τ) is

Y′(τ) =
dY

d τ
=

(
y′(τ)

1

)
=

(
1
v0
ẋ(t0 + T (τ − τ0))

1

)
. (16)

Note that U(Y) is an autonomous dynamical system now: U is a steady velocity field in the extended phase space.
Then Haller et al. Haller et al. [2021] defines TSE and TRA as

TSEtNt0 (x0, v0) =
1

∆t
ln
|Y′(τN )|
|Y′(τ0)|

=
1

∆t
ln
|U(YN )|
|U(Y0)|

(17)

TRAtNt0 (x0, v0) =
1

∆t
cos−1 Y′(τ0)T Y′(τN )

|Y′(τ0)||Y′(τN )|
(18)

=
1

∆t
cos−1 U(Y0)T U(YN )

|U(Y0)||U(YN )|
(19)

where ∆t = tN − t0, (17) is identical to the right-hand side of (5), and (18) is identical to the right-hand side of (9). To
show objectivity of TSE in the extended phase space, one has to prove that TSE is invariant under observation in any
moving Euclidean reference system in the extended phase space. Analogous to Eq. (1), such moving reference system
is defined by

Y = Q(τ)Ỹ + B(τ) , Q(τ) =

(
Q(τ) 0
0T 1

)
, B(τ) =

(
b(τ)

0

)
(20)
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with Q(τ) ∈ SO(n) being a rotation matrix, and 0 being the zero-vector. The observed trajectory Ỹ(τ) and the
underlying velocity field Ũ(Ỹ, τ) in the new moving reference system are

Ỹ(τ) = QT(τ)(Y(τ)−B(τ)) (21)

Ũ(Ỹ, τ) = QT(τ)
(
U
(
Q(τ)Ỹ + B(τ)

)
− Q̇(τ)Ỹ − Ḃ(τ)

)
(22)

where the new trajectory Ỹ(τ) runs from Ỹ0 = Ỹ(τ0) to ỸN = Ỹ(τN ). Then, TSE in the moving reference system is

T̃SE
tN

t0 (x0, v0) =
1

∆t
ln
|Ỹ′(τN )|
|Ỹ′(τ0)|

=
1

∆t
ln
|Ũ(ỸN , τN )|
|Ũ(Ỹ0, τ0)|

. (23)

T̃RA
tN

t0 (x0, v0) =
1

∆t
cos−1 Ỹ′(τ0)T Ỹ′(τN )

|Ỹ′(τ0)||Ỹ′(τN )|
(24)

To show objectivity of TSE in the extended phase space, one has to prove TSE = T̃SE for any moving reference
frame, as given by Eq. (20). To show quasi-objectivity of TRA under averaged-vorticity condition, one has to prove
TRA = T̃RA for all reference frames (20) in which the averaged-vorticity condition is fullfilled.

3 The first counter-example

We show the non-objectivity of TSE in the extended phase space by a simple counter-example. We set the 2D observed
trajectory x(t) and the underlying velocity field v(x, t) as

x(t) =

(
et − 1
t (t+ 1)

)
, v(x, t) =

(
x+ 1
2 t+ 1

)
(25)

for t ∈ [t0, tN ] = [0, 1] and x = (x, y)T. To calculate TSE as in Eq. (5), we only need information at time t0 and tN .
This gives

x0 = (0, 0)T , xN = (e− 1, 2)T (26)

ẋ(t0) = v(x0, t0) = (1, 1)T , ẋ(tN ) = v(xN , tN ) = (e, 3)T. (27)

For the non-dimensionalization transformation, we set τ0 = 0, resulting in τN = 1
T . This gives with Eqs. (13) and (14)

y(τ) =
1

L

(
eTτ − 1

Tτ(Tτ + 1)

)
, u(y, τ) =

1

v0

(
Lx̄+ 1

2Tτ + 1

)
(28)

with y = (x̄, ȳ)T, and therefore we obtain at τ0 and τN

y0 =

(
0
0

)
, yN =

1

L

(
e− 1

2

)
(29)

u(y0, τ0) =
1

v0

(
1
1

)
, u(yN , τN ) =

1

v0

(
e
3

)
. (30)

Transforming to the extended phase space
Y = (x̄, ȳ, z)T (31)

using Eq. (15) gives

Y(τ) =

 1
L (eTτ − 1)

1
L (Tτ(Tτ + 1))

τ

 , U(Y) =

 1
v0

(Lx̄+ 1)
1
v0

(2Tz + 1)
1

 (32)

with the following position and tangent at the curve end points

Y0 = (0, 0, 0)T , YN =

(
e− 1

L
,

2

L
,

1

T

)T

(33)

U(Y0) =

(
1

v0
,

1

v0
, 1

)T

, U(YN ) =

(
e

v0
,

3

v0
, 1

)T

. (34)

4
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Inserting into Eqs. (17) and (18), this results in TSE and TRA:

TSE = ln

√
e2 + 9 + v2

0

2 + v2
0

, TRA = cos−1
e+ 3 + v2

0√
2 + v2

0

√
e2 + 9 + v2

0

. (35)

For our counterexample, it is sufficient to choose a particular moving Euclidean reference system (20) by

Q(τ) = I , B(τ) = τ

(
bc
0

)
(36)

where I is the identity matrix and bc = (xc, yc)
T is a constant 2D vector. For this particular reference system, we get

by (21), (22):

Ỹ(τ) = Y(τ)− τ
(
bc
0

)
(37)

Ũ(Ỹ, τ) = U

(
Y + τ

(
bc
0

))
−
(
bc
0

)
. (38)

This gives the following trajectory end points and tangents:

Ỹ0 = (0, 0, 0)T , ỸN =

(
e− 1

L
− xc
T

,
2

L
− yc
T
,

1

T

)T

(39)

Ũ(Ỹ0, τ0) = Ỹ′(τ0) =

(
1

v0
− xc ,

1

v0
− yc , 1

)T

(40)

Ũ(ỸN , τN ) = Ỹ′(τN ) =

(
e

v0
− xc ,

3

v0
− yc , 1

)T

(41)

and finally by inserting into Eq. (23), we get T̃SE:

T̃SE = ln

√
(e− v0xc)2 + (3− v0yc)2 + v2

0

(1− v0xc)2 + (1− v0yc)2 + v2
0

(42)

Analogously, T̃RA follows by inserting (40)–(41) into (24). Since there is no positive constant v0, cf. (12), that makes
TSE in (35) and T̃SE in (42) identical for any bc = (xc, yc)

T, non-objectivity of TSE in the extended phase space is
shown. Since in our example both U(Y) and Ũ(Ỹ, τ) have zero vorticity, the average-vorticity condition in Haller et
al. [Haller et al., 2021] is trivially fulfilled. Thus, the difference of TRA and T̃RA gives that TRA is not quasi-objective
in the extended phase under the average-vorticity condition.

Where is the error?

Haller et al. Haller et al. [2021] considered a non-zero vector ξ0 at (x0, t0) that is advected with v along x(t), resulting
in

ξ̇(t) = ∇v(x(t), t) ξ(t) , ξ(t0) = ξ0. (43)
Then, ξ(t) is observed under a moving reference system (1). Objectivity of ξ is deduced from (43), (1):

ξ̃(t) = QT(t) ξ(t) (44)

where ξ̃ is the observation of ξ under the moving reference system (1). From (44) follows the objectivity of 1
∆t ln |ξ(tN )|

|ξ0|
.

We note that (44) follows from (43) and (1) only if another implicit assumption holds: objectivity of the seeding vector
ξ0, i.e., ξ̃0 = QT(t0) ξ0.

The approach of Haller et al. Haller et al. [2021] is to set ξ0 = v0 = v(x0, t0). With this, additional conditions are
necessary to ensure

v̇(t) = ∇v(x(t), t) v(x, t) (45)

ṽ(x̃, t) = QT(t) v(x, t) (46)

where (45) corresponds to (43) and (46) corresponds to (44). To ensure (45), Haller et al. Haller et al. [2021] introduced
the condition

(A1) ∂tv(x, t) = 0

5
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in the current observation frame. However, condition (A1) does not ensure (46) because ξ0 = v0 is not objective. Since
the observation of v under the moving reference system (1) is [Haller, 2021]

ṽ(x̃, t) = QT(t)
(
v(x, t)− Q̇(t) x̃− ḃ(t)

)
, (47)

Eq. (46) is in general only fulfilled for Q̇ = 0, ḃ = 0, i.e., the reference frame is not moving but static, resulting in
demanding that ṽ(x̃, t) is steady. This means that the condition for the quasi-objectivity of TSE is the steadiness of
both v and ṽ in all considered reference frames. We remark that this is a rather strong condition for quasi-objectivity: it
excludes the consideration of all moving reference frames.

The transformation to the extended reference system transforms v to the steady vector field U, making the condition
(A1) for (45) in the extended reference frame obsolete. However, the observation Ũ of U under a moving reference
system (20) is not a steady vector field anymore, as shown in (22). This means that

Ũ(Ỹ, τ) = Q(τ) U(Y) (48)
does not hold in general but only for particular steady reference frames. Because of this, TSE is in the extended phase
space not objective but only quasi-objective under restriction to a static reference system.

Summary: The error was to assume that the observation of an autonomous system (steady vector field) in the extended
phase space under a moving reference frame remains an autonomous system.

Remarks: A similar argumentation gives that TSE is not objective in the extended phase space, and and that TRA is
is not quasi-objective in the extended phase space under the averaged-vorticity-based condition. TSE, TSE, TRA and
TRA are not even Galilean invariant because the moving reference system (36) in the counterexample was performing a
Galilean transformation.

4 The second counter-example

In an erratum, Haller et al. Haller et al. [2022] give up the idea of considering extended phase space and non-
dimensionalization, and introduce a new condition

(A3) |∂tv(x(t), t)| � |ẍ(t)|. (49)
Based on this, Theorem 3 in Haller et al. [2021] is reformulated. Unfortunately, the reformulated theorem is still
incorrect. To show this, we consider a second counter-example. We consider the 3D trajectory and the underlying
velocity field

x(t) =

(
et

−t
0

)
, v(x, t) =

(
x
−1
0

)
(50)

with x = (x, y, z)T and t running from t0 = 0 to tN = 1. Observing x,v under a reference system (1) with
Q(t) = I , b(t) = (0, t, 0)T (51)

gives

x̃(t) =

(
et

−2 t
0

)
, ṽ(x̃, t) =

(
x̃
−2
0

)
(52)

with x̃ = (x̃, ỹ, z̃)T. We note that
∂tv(x, t) = ∂tṽ(x̃, t) = ω(x, t) = ω̃(x̃, t) = 0 (53)

ẍ(t) = ˜̈x(t) = (et, 0, 0)T (54)
where ω, ω̃ are the vorticity of v, ṽ, respectively. This means that all conditions (A1),(A2) (from Haller et al. [2021])
and (A3) (from Haller et al. [2022]) are fulfilled both in the original frame in (50) and in the particular moving reference

frame in (52). Computing TSE, TSE, TRA, TRA from (50), and computing T̃SE, T̃SE, T̃RA, T̃RA from (52) gives

TSE = TSE =
ln(e2 + 1)− ln(2)

2
≈ 0.71689 (55)

T̃SE = T̃SE =
ln(e2 + 4)− ln(5)

2
≈ 0.41161 (56)

TRA = TRA = tan−1(e)− π

4
≈ 0.43288 (57)

T̃RA = T̃RA = tan−1(e/2)− tan−1(1/2) ≈ 0.47282 (58)

6
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For TSE being quasi-objective under condition (A3) following Haller et al. [2021], there must be an objective scalar P
such that

TSE ≈ P , T̃SE ≈ P̃ (59)

where P̃ is the observation of P under reference frame (51) and “the accuracy of the approximation indicated by
the symbol ≈ depends on the extend to which the conditions (A3) is satisfied” Haller et al. [2021]. Note that here
assumption (A3) is completely satisfied, since the value |∂tv(x(t), t)|/|ẍ(t)| as considered in Figure 1 of Haller et al.
[2022] is constant zero in both reference frames, see Eq. (53)–(54). Since P = P̃ due to the demanded objectivity of
P and since assumption (A3) is completely satisfied, Eqs. (55) and (56) give that (59) cannot be fulfilled since TSE and
T̃SE are significantly different. Hence, TSE is not quasi-objective under condition (A3).

Eqs. (55)–(58) give that similar statements hold for all measures TSE, TSE, TRA, TRA: none of them is quasi-objective
under any combination of conditions (A1), (A2), (A3). This example and the example from Section 3 show that all
theorems in both Haller et al. [2021] and Haller et al. [2022] are incorrect.
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