
EUROGRAPHICS 2024 / A. Bermano and E. Kalogerakis
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 43 (2024), Number 2

OptFlowCam:
A 3D-Image-Flow-Based Metric in Camera Space

for Camera Paths in Scenes with Extreme Scale Variations

Lisa Piotrowski, Michael Motejat, Christian Rössl, and Holger Theisel

Otto von Guericke University Magdeburg, Germany
https://livelyliz.github.io/OptFlowCam/

Abstract

Interpolation between camera positions is a standard problem in computer graphics and can be considered the foundation of
camera path planning. As the basis for a new interpolation method, we introduce a new Riemannian metric in camera space,
which measures the 3D image flow under a small movement of the camera. Building on this, we define a linear interpolation
between two cameras as shortest geodesic in camera space, for which we provide a closed-form solution after a mild simplifica-
tion of the metric. Furthermore, we propose a geodesic Catmull-Rom interpolant for keyframe camera animation. We compare
our approach with several standard camera interpolation methods and obtain consistently better camera paths especially for
cameras with extremely varying scales.

CCS Concepts
• Computing methodologies → Computer graphics; Perception; • Human-centered computing → Interaction techniques;

1. Introduction

Camera paths are used to convey information about a scene or ob-
ject in both 2D and 3D scenes. This task is a common one, be it in
scientific and commercial visualization or computer games, static
or interactive environments. Especially when connecting multiple
viewpoints, it is vital not to disorient the viewer and to provide
context about where the camera is and where it is going so that the
viewer can build a mental map of the scene. This can be done, e.g.,
by zooming out on a detail, showing an overview, and then zoom-
ing in on another detail. For 2D images and documents, this has
been done by van Wijk and Nuij [vN03], but there is currently no
equivalent method for the common case of 3D scenes.

We consider camera path construction as a mixed automatic and
interactive process: the user specifies a sequence of camera posi-
tions (key frames) from which a "good" camera path is automati-
cally constructed. Several criteria for the quality of a camera path
have been proposed, such as smoothness, or the minimization of
arc length, total curvature, bending energy, acceleration, or other
measures. In addition, further criteria from cinematography can be
considered to incorporate aesthetic aspects of a path. This makes
camera path construction a multi-objective optimization problem
where parts of the objectives cannot be described in a purely math-
ematical way.

A common approach is to consider piecewise polynomial spline

curves as camera paths. They are naturally smooth, minimize cer-
tain energies like combinations of arc length and simplified bending
energy, and come with a simple representation of intuitive control
points [Far02]. Polynomial spline curves can be described by re-
peated linear interpolation of control camera points (e.g., by apply-
ing De Casteljau’s algorithm for Bézier curves or De Boor’s algo-
rithm for B-Spline curves). Since the linear interpolation requires a
metric to be computed, spline curves in the camera space depend on
an underlying metric in that space. Usually, this metric is assumed
to be the Euclidean metric.

In this paper, we introduce a new Riemannian metric in camera
space that measures the 3D image flow in the 3D image space in-
duced by the movement of the camera (Section 4). This measure
is related to, but not identical with, optical flow. Based on this, we
consider the linear interpolation between two cameras as the cam-
era path with minimal 3D image flow, i.e. the shortest geodesic
in the new metric. Since the computation of geodesics as boundary
value problem is numerically challenging, we introduce a mild sim-
plification of the metric (Section 4.3) which allows the computation
of geodesics in a closed form (Section 4.4). With this, we propose
an interpolating Catmull-Rom spline where linear interpolation is
replaced by geodesics computation (Section 4.5).

Optical flow is known to be related to the perception of self-
motion [WH88] and a factor in causing cybersickness in virtual
reality [WR22]. So, the motivation of our approach is the assump-

© 2024 The Authors. Computer Graphics Forum published by Eurographics - The European Asso-
ciation for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

https://livelyliz.github.io/OptFlowCam/

2 of 13 L. Piotrowski, M. Motejat, C. Rössl, H. Theisel / OptFlowCam

tion that by minimizing the flow in the 3D image, we achieve a
perceptually favorable camera path.

As we will show in our results, our metric also accomplishes
that the camera provides context by zooming. This is especially
critical for camera paths involving extreme change of scale, e.g.,
when the camera moves from a strong close-up in one part of the
scene to either a close-up in another part or a global overview of
the scene. We show that our approach gives a significantly better
camera path than in an Euclidean camera space, in particular for
paths with extreme scaling.

2. Background

Before we go into detail about our method, we want to give a short
review of metric spaces and geodesic paths. For more information
and a more in depth introduction, we refer the reader to literature
on the topic of Riemannian geometry [DC92,Pet06] and differential
geometry [Str50].

In the context of this work, a metric space is a differentiable
manifold that is equipped with a Riemannian metric tensor M(x)
which depends on the point in the manifold x. In other words, it is
a locally Euclidean space with an object that allows us to measure
lengths and angles in that space. One example is the standard Eu-
clidean space Rn with its metric tensor the identity matrix M = Id.
A less trivial example is the sphere.

If we have a parametrized curve x(t) on the manifold that is de-
fined on the parameter interval t ∈ [0,1], then the length of the curve
given the metric tensor M is∫ 1

0

»
ẋ(t)T M(x(t)) ẋ(t) dt, (1)

where ẋ = dx
dt . This is the well known formula for arc length of

parametric curves in Euclidean space. Now, to connect two points
on the manifold, we often want to do so by using the “straightest”
path with (locally) minimal length, often referred to as a geodesic
path. While a geodesic does not necessarily has to be of minimal
length [Str50, p. 140], geodesics are minimizers of a variational
problem involving the squared arc length energy functional. The
variational problem we need to solve for is as follows: Given are
two points on the manifold x0 and x1. We need to find a curve x(t)
such that x(0) = x0, x(1) = x1 and the energy∫ 1

0
ẋ(t)T M(x(t)) ẋ(t) dt, (2)

is minimal. The solution does not only give a geodesic [Pet06, p.
116] but a geodesic in equal-speed (or arc length proportional)
parametrization [DC92, p. 194], i.e. ẋ(t)T M(x(t)) ẋ(t) is constant
for all t. This would in fact not be the case if we use Eq. (1) instead
of Eq. (2).

The solution then satisfies the geodesic equation [Pet06], here
given in matrix notation as

ẍ =
1
2

M−1
Ä
∇(ẋT M ẋ)−2 (∇M ẋ) ẋ

ä
. (3)

In general, there is no closed-form solution to this boundary value
problem. Even finding a numerical solution can be hard depending

on the behavior of the metric. Because of this, simplifications to
the problem space can vastly improve the chances to find a solution
which we leverage in our work.

3. Related Work

Keyframes are established in 3D modelling and animation software
for defining a camera path as a sequence of frames with fixed at-
tributes such as position or orientation of the camera. Interpolation
techniques, e.g., Catmull-Rom or Bézier splines, are then used to
compute the attributes in the intervals between the keyframes. De-
signing camera paths using this technique is typically intuitive be-
cause the control polygon is a very coarse version of the path. It also
offers a great deal of creative freedom within certain constraints to
ensure smoothness. However, creating a good camera path requires
a skillful animator. The challenges lie in interpolating rotations and
selecting an appropriate velocity that prevents viewer discomfort.
This is particularly relevant when the keyframes exhibit vastly dif-
ferent scales, for instance when zooming in or out on features. As
our concept can also allows keyframe interpolation, it can be used
as a drop-in alternative for traditional keyframe approaches. It can
be used similarly to standard keyframing and is fast enough to al-
low for interactive editing of the path.

Keyframe interpolation can be accomplished through various
methods. The simplest approach is linear interpolation of each at-
tribute. Although this may work well for the camera position, it of-
ten results in undesired outcomes for the camera orientation. Due to
the fact that interpolating rotation angles does not typically equate
to a rotation around a fixed axis, the result can be unintuitive.
A better option would be, i.e. to interpolate the positions the cam-
era should look at and the position of the camera itself linearly.
This way, the orientation of the camera is determined by the two
positions and an additional, globally chosen vector that defines the
upright position. However, this can also lead to awkward camera
poses when the path of the view target and the camera position
pass close to each other.
Another method is similar to the work of Alexa [Ale02]. It involves
interpolating the transformations linearly opposed to linear interpo-
lation of the attributes defining these transformations. This has the
advantage that, e.g., the rotation is performed around a fixed axis.
We will address the specific transformations when we compare our
method to alternatives in Section 6.

Other automatic path generation techniques go beyond sim-
ple interpolation. They often optimize or generate paths based
on different requirements such as cinematography [MC00, CL03,
NAD∗17, GH21], saliency [AVF04, XYH∗18], or physical prop-
erties of the path [JRT∗15, GHN∗16, XYH∗18]. Some algorithms
even try to optimize a given camera path so that the optical flow
in the resulting camera image is reduced [AA10, HLH∗16]. These
techniques often utilize numerical optimization algorithms and de-
pend on the visible scene. This means that they have to be recalcu-
lated when the scene changes even if the keyframes did not.
In contrast, our approach is only partially dependent on the scene
by the use of a look-at target which can even be defined in the
absence of scene geometry. Moreover, its closed-form solution is
more akin to an interpolation scheme although it still originates
from an optimization problem.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

L. Piotrowski, M. Motejat, C. Rössl, H. Theisel / OptFlowCam 3 of 13

Dim. Space Notation

1D scalar s, t
3D Euclidean space x,v,M
4D Euclidean homogenous coord. x̃, ṽ,‹M
9D camera space x̂, v̂,“M
7D simplified camera space x,v,M

Table 1: Notation. Lower case letters denote scalars or vectors
while upper case letters denote matrices.

One approach that achieves smooth paths without an optimiza-
tion routine but still incorporates scene and composition informa-
tion is that of Lino and Christie [LC15] which works in a dimen-
sionally reduced camera space, the toric space. The interpolation
of multiple viewpoints is a non-linearly interpolated blend of two
linearly interpolated curves The idea of the toric space was also
used in the work of Galvane et al. [GCLR15] to put the camera on
a “rail” to smoothly track a target object in a scene.
Similar to our approach, the user needs to specify what will be seen
on screen even though our method is less specific in regard of what
object will be seen where in the viewport. While the viewpoint in-
terpolation in [LC15] can be customized to increase and decrease
speed at the start and end of the curve, our interpolation technique
does this inherently without needing further adjustments. This is an
advantage especially in scenes with large change of scale.

The most significant work that is related to ours is that of
van Wijk and Nuij [vN03]. They propose a solution for a geodesic
path for zooming and panning in large documents or images, which
can be thought of as a 2D camera space. In summary, the resulting
motion can be described by the relation of zooming level and hori-
zontal movement velocity. The further away the imaginary camera
is from the image plane, the faster it can pan. It also reveals that the
optimal zooming velocity is exponential to the current zoom level
(or distance to the image plane).
Our method shares the same principle idea and extends it by camera
rotation, which makes it suitable for 3D scenes and more general
camera paths.

Geodesic paths also play a role in other areas of computer
graphics. A notable one is relativistic ray tracing, where the as-
sumption that light travels in a straight line is no longer true.
This can, for instance, be used to render light phenomena around
black holes [DKC∗22, HDL22]. There exist several different met-
rics to describe the relativistic properties which all result in differ-
ent geodesics in these areas and therefore different renderings.
However, finding solutions for geodesics in those contexts is sim-
pler than in our case because it is an initial value problem (point
and direction) instead of a boundary value problem (point to point).
Thus, we cannot apply the same methods to calculate our geodesic
paths.

4. Method

In this section, we will first explain the camera model as a 9D vector
describing the position, size, and orientation of the camera frustum.
Then we define the camera space metric as a measure of the flow

inside the 3D image induced by the camera motion. Since the origi-
nal camera space is too complicated to solve for geodesic paths, we
simplify the problem by replacing the frustum with the best-fitting
cube, which gives us a simpler metric. The simplified problem then
allows us to find a closed-form solution for geodesic paths. Finally,
we explain how we can interpolate more than two points in camera
space using our results and a recursive scheme for Catmull-Rom
splines. The notation used in this section is summarized in Table 1.

4.1. Camera Model

In computer graphics, several approaches and naming conventions
exist to define a camera and its transformations. In the viewing
pipeline, a view frustum undergoes a projective transformation,
converting it into a canonical view volume - a 3D cube aligned with
the camera axes. This canonical view volume is then orthographi-
cally projected to a 2D image. While different rendering pipelines
assign various names and spatial extents to the canonical view vol-
ume (e.g., "clipping space" in OpenGL with [−1,1]3), we refer to
it as the “3D image” with an extension of [−1/2,1/2]3. Note that
the extent does not influence the shape of the final geodesics. Here
we are only interested in the transformation from the view frustum
to the 3D image, as this sets the camera parameters.

We also want to clarify the differences and connections between
optical flow and 3D image flow. While optical flow is a flow field
defined in the 2D image space of the final projected image, we use
the concept of a 3D image space for 3D image flow. As already
mentioned, 3D image is just another name for the 3D canonical
view volume. This means, conceptually it is the step of the viewing
pipeline right before the projection to the 2D image. Simply put,
optical flow is the projection of the 3D image flow that occurs on
visible surfaces. Choosing the 3D flow field in the whole volume
over the optical flow has the advantage that we can make simplifi-
cations to the transformations we use and are not subject to changes
in surface visibility or scene geometry.

The camera model we are using to define our camera space is
based on a standard pinhole camera model and is illustrated in
Fig. 1. Usually, such a camera model is defined in terms of posi-
tion of the camera center (or eye point), the orientation of camera
and an internal camera parameter like focal length or opening an-
gle. We will use a 9-dimensional camera model

ĉ = (mx,my,mz,sx,sy,sz,φ,θ,ψ)T (4)

that consists of three 3D vectors which define the external camera
parameters:

• m = (mx,my,mz)T : position of the camera frustum’s mid point
• s = (sx,sy,sz)T : positive x, y and z scaling factor of the camera

frustum, that define the distance of the eye point to m
• o = (φ,θ,ψ)T : Euler angles defining the rotation around the x-,

y- and z-axis respectively

Additionally, we need one internal parameter that defines the open-
ing angle, which is constant and not subject of interpolation. We
choose f as the value defining the distance of the eye point to the
frustum center (relative to sz) which is related to the focal length.

Based in the camera parameters, we define the transformation

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

4 of 13 L. Piotrowski, M. Motejat, C. Rössl, H. Theisel / OptFlowCam

p that maps the 3D image (unit cube centered around the origin)
to the view frustum. Each camera parameter is associated with a
homogenous transformation matrix

T̃ =

Å
Id m
0 1

ã
, S̃ =

Å
diag(s) 0

0 1

ã
, R̃ =

Å
R 0
0 1

ã
(5)

F̃ =

á
1− 1

4 f 2 0 0 0
0 1− 1

4 f 2 0 0
0 0 1 − 1

4 f
0 0 − 1

f 1

ë
(6)

where

R = (r u a) (7)

=

Å
cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

ãÅ
cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

ãÅ
1 0 0
0 cos φ − sin φ

0 sin φ cos φ

ã
(8)

is the matrix that defines the orientation of the camera and r,u,a
define its column vectors. They represent the unit right, up and view
vector of the camera in world coordinates, respectively. The eye
point e can be calculated as

e = m− f s a (9)

where s = (sx · sy · sz)
1
3 and a is defined as in Eq. (7). With this in

place, we can define a projective transformation matrix in homoge-
nous coordinates

P̃(ĉ) = T̃ R̃ S̃ F̃ (10)

that transforms a point x with homogenous coordinates x̃ = (x,1)T

from the 3D image space Ω= [− 1
2 ,

1
2]

3 to the view frustum in world
space with

p̃(ĉ, x̃) = P̃(ĉ) x̃. (11)

The corresponding 3D transformation is then

p(ĉ,x) = 1
p̃(ĉ, x̃)[4]

Ñ
p̃(ĉ, x̃)[1]
p̃(ĉ, x̃)[2]
p̃(ĉ, x̃)[3]

é
. (12)

where [i] refers to the i-th vector component.

4.2. Metric of the 9D Camera Space

As already mentioned in Section 2, our metric is supposed to mea-
sure the flow in the 3D image induced by the motion of the camera.
For that we need to pull back the flow induced in the frustum to the
3D image space and then measure its average squared length by the
energy functional. Based on that, we define the metric tensor which
will turn out to be an integral over the 3D image space.

An infinitesimal movement of the camera is defined as ĉ′ = ĉ+
λv̂, where v̂ is a change in the camera parameters (i.e. a vector in
camera space) and λ→ 0. When we now use the displaced camera
to transform p(ĉ,x) back to the image space, we get a new point

x′= p−1
Ä

ĉ′, p(ĉ,x)
ä
= p−1 (ĉ+λv̂, p(ĉ,x)) . (13)

We consider the limit of the difference between x and x′ as the 3D
image flow f = limλ→0

x′−x
λ

that the camera movement v̂ induces
at every point x in the 3D image space. This way, f is the directional

derivative of p−1 in the direction v̂, mapped from the world space
to the image space. It can be written as

f(ĉ, v̂,x) = (∇x p)−1(∇̂c p) v̂ (14)

where

∇x p = (px py pz) (15)

∇̂c p =
(
pmx pmy pmz psx psy psz pφ pθ pψ

)
(16)

are the spatial Jacobian and the Jacobian in camera space, respec-
tively. Here, subscripts denote partial derivatives. Fig. 2 shows an
illustration of this concept. As we can see, the smaller the frustum
is, the larger is the overall magnitude of the vectors in the field in
3D image space for the same movement λv̂.

Our objective is now to measure the average squared length of
the vectors in the 3D image space volume. We calculate this by the
triple integral over the unit cube Ω = [− 1

2 ,
1
2]

3∫
Ω

fT f dx

=
∫

Ω

v̂T (∇̂c p)T (∇x p)−T (∇x p)−1(∇̂c p) v̂ dx

= v̂T “M(ĉ) v̂ (17)

where “M(ĉ) =
∫

Ω

(∇̂c p)T (∇x p)−T (∇x p)−1(∇̂c p) dx (18)

is a symmetric, positive definite matrix we use as the Riemannian
metric in the 9D camera space. “M has a closed form for which we
will provide a derivation with Maple in the additional materials.

In theory we can use this metric to find geodesics, however, as
mentioned at the beginning, not every metric is feasible for nu-
merically computing geodesics and simplifications can greatly in-
crease the chance to do so. The reasons why we choose to sim-
plify the problem are twofold. First, the size of the metric varies
strongly in different regions of the camera space. Second, the con-
dition number can become very large. Both properties pose consid-
erable numerical challenges and make a fast numerical computa-
tion of geodesics impossible for our metric. We show an example
for this when we compare the simplified metric to the 9D metric in
Appendix B.

4.3. Metric of the 7D Simplified Camera Space

The general idea of our simplification is to replace the pyramid
shape of the actual camera frustum with the best fitting cube, i.e.
a cube with the same center, volume and orientation. We can see
an illustration in Fig. 3. Because of the cubical shape of the simpli-
fied view frustum, we can reduce the dimensionality of the camera
space to 7D by setting sx = sy = sz = s. So the new camera is

c = (mx,my,mz,s,φ,θ,ψ)T . (19)

With this camera model, we can compute the transformation p(c,x)
from 3D image space to 3D world space by applying the equations
(10)–(12) under the replacement F̃ = ‹Id. Similar to the equations
(14)–(18), we get

f(c,v,x) = (∇x p)−1(∇c p) v (20)

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

L. Piotrowski, M. Motejat, C. Rössl, H. Theisel / OptFlowCam 5 of 13

1
2

1
2

− 1
2

− 1
2

m
a

u

e

s f sz
2

sz
2

sy
2

sy
2

view frustum
=

world space

3D image
=

unit cube
=
Ω

y

x

p(̂c
,x)

Figure 1: 9D camera model ĉ. The transformation p maps a unit
cube in 3D image space (left) to the view frustum in 3D world space
(right).

y

x

f(ĉ,x)

ĉ+λv̂

(a)

y

x

f(ĉ,x)

ĉ+λv̂

(b)

Figure 2: Moving the camera from ĉ to ĉ+λv̂ induces a flow field
f in the 3D image space. The average flow magnitude is larger for
the same change in the camera parameters if the frustum has a
smaller scale (compare (b) to (a)). This means to minimize the flow
magnitude of f, the camera needs to move slower if its eye point is
closer to the point of interest m.

m
a

u

e

s f
s
2

s
2

s
2

s
2

Figure 3: Simplified 7D camera model c. We replace the frustum
by the best-fitting cube.

and

M(c) =
∫

Ω

(∇c p)T (∇x p)−T (∇x p)−1(∇c p) dx. (21)

Fortunately, M(c) has a simple closed-form solution

M(c) =

1
s2 0 0 0 0 0 0
0 1

s2 0 0 0 0 0
0 0 1

s2 0 0 0 0
0 0 0 1

4s2 0 0 0
0 0 0 0 1

6 0 − sin θ

6
0 0 0 0 0 1

6 0
0 0 0 0 − sin θ

6 0 1
6

(22)

that is even that simple to allow closed-form solutions for
geodesics. We provide a Maple sheet in the additional materials
to prove the form of M.

4.4. Geodesics of the Simplified Camera Space

In Section 2 we established that geodesics are minimizers of the
energy functional. Thankfully, our simplified metric allows us to
derive a closed-form solution for this variational problem which
we prove in Appendix A. In the following, we will give this so-
lution deconstructed into three separate parts m(t), s(t) and R(t),
where R(t) is the time varying orientation matrix for the camera.
We choose to use R(t) instead of working directly with the Euler
angles o(t) because converting to R makes it easier to express the
desired rotation. It is possible to extract the angles from the orien-
tation matrix but one needs to take special care because the same
orientation can be expressed with different angles.

As we can see in the structure of M, the upper left 4× 4 block
that is connected to the position and scale of the frustum is indepen-
dent of the lower right 3× 3 block connected to the rotation. This
means that we can handle both parts separately. For this section, we
still assume a parameter interval of t ∈ [0,1].

4.4.1. Defining R(t)

First, we need to find the axis of rotation to transform the ori-
entation of c0 to c1. We can do this by utilizing the matrices
R0 = (r0 u0 a0) and R1 = (r1 u1 a1).

Using the two matrices, the axis of rotation is then the nor-
malized eigenvector k corresponding to the zero eigenvalue of
(R1−R0)

T , i.e., we search the solution for

(R1−R0)
T k = 0 ⇔ R0RT

1 k = k, kT k = 1. (23)

This solution always exists because the matrix R0RT
1 is again a

3D rotation matrix and, therefore, needs to map one vector (the
axis of rotation k) to itself. In the case that every eigenvalue of
(R1−R0)

T is zero (when the two matrices are identical), we can
simply choose any unit vector as axis of rotation because the angle
of rotation is zero and therefore the choice of the axis does not have
any influence.

We can now define a change of basis matrix Rk = (k1 k2 k). The
other two vectors are chosen as

k2 =
k×a0
‖k×a0‖

, k1 = k2×k. (24)

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

6 of 13 L. Piotrowski, M. Motejat, C. Rössl, H. Theisel / OptFlowCam

This ensures that we can determine the angle of rotation ξ with

ξ = arctan2
Ä
(RT

k a1)[2], (R
T
k a1)[1]

ä
. (25)

We chose arctan2 over the simple arctan because it allows us to
recover an angle in the range of (−π,π] for ξ. Using

Rξ(t) =

Ñ
cos(ξ t) −sin(ξ t) 0
sin(ξ t) cos(ξ t) 0

0 0 1

é
,

the final orientation matrix for the camera at time t is

R(t) = Rk Rξ(t) RT
k R0. (26)

In other words, the geodesic for the rotation is a rotation with con-
stant speed by ξ around a fixed axis of rotation k.

4.4.2. Defining m(t) and s(t)

First, we want to define some notation for convenience. We choose

d = ‖m1−m0‖, d =
m1−m0

d
(27)

to denote the distance and normalized direction vector from m0 to
m1 respectively. Additionally,

bi =
s2

1− s2
0 +(−1)i 4d2

4si d
(28) ri = ln

(
−bi +

»
b2

i +1
)

(29)

for i = 0,1. With those, we can define

s(t) =
s0 cosh(r0)

cosh((r1− r0)t + r0)
(30)

as well as

m(t) =
s0
2

cosh(r0) tanh((r1− r0)t + r0)−
s0
2

sinh(r0) (31)

m(t) = m0 +m(t) d. (32)

In the special case d = 0, this converges to

s(t) = s0 exp(sign(s1− s0) | ln(s1)− ln(s0)| t) (33)

m(t) = m0. (34)

Note that the equations for s(t) and m(t) are similar to zooming
and panning form in the work of van Wijk and Nuij [vN03]. To
summarize, the following theorem is the main theoretical basis of
our approach:

Theorem 1 The camera path c(t) given by m(t) (32), s(t) (30) and
R(t) (26) is a geodesic in the metric space given by M (22). Fur-
ther, c(t) is equal-speed (or arc length proportional) parametriza-
tion with interpolation conditions c(0) = c0, c(1) = c1.

We prove the theorem in Appendix A.

4.4.3. Length of the Geodesic Path

With the definition of the geodesic in place, we can determine the
geodesic distance (or the length of the geodesic path c(t)) of two
points in the camera space as

dist(c0,c1) =
∫ 1

0

»
ċ(t)T M(c(t)) ċ(t) dt (35)

=

(r1− r0)2

4
+

ξ2

6
. (36)

where ċ(t) = dc
dt . For d = 0, this converges to

dist(c0,c1) =

(ln(s1)− ln(s0))2

4
+

ξ2

6
. (37)

4.5. Catmull-Rom Spline Interpolation

Until now we only discussed how we can join two points in cam-
era space. Usually, we want to connect more when we design a
camera path. In the spirit of the work of Nava-Yazdani and Polth-
ier [NYP13], we want to join a sequence of camera positions with
repeated linear interpolation in the metric camera space.

Given is a sequence of n + 1 camera positions
(c0, . . . ,ci, c j, . . .cn) at time values (or knots) (t0, . . . , ti, t j, . . . , tn)
where ti < t j, i < j that should be interpolated and joined to one
continuous, smooth path. As one option for interpolation, we
could try to construct a C1/C2 continuous Bézier spline curve.
However, constructing the necessary control points is difficult
because the camera space is not Euclidean. Keep in mind that
the construction of an interpolating B-Spline curve in Euclidean
space requires the solution of a global linear system [Far02]. In
our metric this linear system translates to a system of nonlinear
equations for which no closed form solution is available. For this
reason, we chose Catmull-Rom splines instead. They show C1

continuity, and we can use a recursive algorithm similar to De
Boor’s algorithm [BG88, YSK09] to evaluate them without the
need of solving a global system of equations.

Catmull-Rom splines are also ideal for keyframes because they
allow the user to determine the time where a certain point should
be reached instead of just determining the shape of the curve and
fixing the parametrization. However, the parametrization affects
the shape and quality of the camera path. Following Yuksel et
al. [YSK09], we propose a centripetal parametrization based on
geodesic distances in camera space.

While Catmull-Rom splines are interpolating splines, they do not
interpolate the first and last control points because these only de-
termine the tangent at the beginning of the first and end of the last
segment. For that reason, we need two additional points c−1 and
cn+1 as well as their knot values t−1 and tn+1. We achieved reason-
able results with

c−1 = c0 t−1 =−t1 +2 t0 (38)

cn+1 = cn tn+1 =−tn−1 +2 tn. (39)

We remark that there are some difficulties when using Catmull-
Rom splines. For one, the recursive evaluation scheme is com-
putationally more expensive than the equivalent of just joining
the keyframes with geodesic segments because we do not have a
closed-form solution anymore. We will discuss this in the imple-
mentation section.
Another problem we noticed was due to the extrapolation that is
part of the Catmull-Rom evaluation scheme. The recursive com-
putation requires us to evaluate the geodesic outside of the [0,1]
range. This means that, if a rotational part is present, the angle with
which we rotate around the rotational axis k is outside of the [0,ξ]
range. If ξ is already close to π in any direction, extrapolation can
push the angle of rotation to > π. In consequence, the next step of

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

L. Piotrowski, M. Motejat, C. Rössl, H. Theisel / OptFlowCam 7 of 13

(a)

(b)

Figure 4: Catmull-Rom spline composed of 3 keyframes. The path
starts at A (frame 0), continues to B (frame 80) and ends in C
(frame 100). (a) The unmodified spline exhibits a gap because of
the extrapolation in the Catmull-Rom scheme and the discontinuity
present in the arctan2 function. (b) This behavior can be corrected
by inserting an additional keyframe a at frame 21, right before the
discontinuity.

the recursive evaluation scheme can flip the direction of rotation
because arctan2 can only recover angles in the range of ±π. This
leads to a discontinuity in the evaluation scheme from one sample
point to the next which then leads to gaps in the path. We can see
this happening in Fig. 4a. We were able to resolve this problem by
inserting a new keyframe right before the discontinuity as seen in
Fig. 4b. Sometimes the issue could also be resolved by choosing
another parametrization for the keyframes. Both chordal and cen-
tripetal Catmull-Rom curves were working well in practice when
we used our distance measure Eq. (36) to compute them.

5. Implementation

We implemented our camera path as a Python add-on script for the
3D modeling software Blender. The implementation allows us to
interactively add keyframes and see the resulting camera path as a
geometric object. Additionally, it allows us to inspect the path from
the view point of the camera. All examples, with the exception of
Gaia Sky and the Mandelbulb fractal, were generated with that add-
on. It is available at https://livelyliz.github.io/OptFlowCam/.

As noted above, the Catmull-Rom splines need a lot longer to
compute than the simple geodesic path. For example, a path that
was sampled at 200 equidistant samples of the interval [0,1], the
single core implementation for the Catmull-Rom spline was about
100x slower than the simple geodesic path (1.1 seconds compared
to 0.01 seconds). We were able to leverage the slow computation
time by parallelizing it with Pythons multiprocessing package but
the computation time was still 10x slower (about 0.1 seconds). We
should also note that our implementation was not optimized for
speed, so there might be a more efficient implementation that re-
duces the difference in computation time even further.

Because of the computation time, we opted to not have automatic

updates of the path while editing. However, it is still possible to
interact with the path in a reasonable manner. At this point, we
want to refer the reader to the video in the additional materials that
shows an interactive session in Blender.

For the examples in Gaia Sky [SJMS19] and Mandelbul-
ber [Man], we used another Python script that generates files for
both softwares that allow us to import our camera paths.

We already mentioned that the Catmull-Rom interpolation can
create gaps in the path and we can prevent that with additional
keyframes. To avoid that the user has to add these manually, we
implemented a method that automatically inserts new keyframes at
path discontinuities. For that, we detect angle and length disconti-
nuities of the Euclidean tangent vectors of the path. We found that
this works well in practice for most situations. However, regions
of high curvature or an insufficient number of keyframes are still
challenging. The downside of this approach is that it additionally
increases the computation time because the spline curve has to be
computed every time a new keyframe is inserted and the process
may need several iterations.

We also noticed some numerical issues with our current imple-
mentation. If bi (Eq. (28)) becomes large (> 106), floating point
precision is insufficient to accurately compute ri. This is why for
large values we opt to replace Eq. (29) with

ri =−sign(bi) ln(2 |bi|), (40)

which has the same limit for bi→∞ as Eq. (29) but is more robust.

Generally, it can happen that keyframes are not interpolated ex-
actly due to numerical errors. However, while the differences are
noticeable when precision is required, the frame is still close to the
original (see frame 500 of Fig. 8).

6. Results

In this section, we want to show our results and compare them to
standard methods:

1. linear interpolation of the look-at point (or view target) and lin-
ear interpolation of the camera eye point positions, i.e.

m(t) = (1− t) m0 + t m1, e(t) = (1− t) e0 + t e1

2. linear interpolation of the transformations involved in the cam-
era space (which is similar to the work of Alexa [Ale02]), i.e.,
the use of R(t) as defined in Eq. (26) and

m(t) = (1− t) m0 + t m1, s(t) = (1− t) s0 + t s1.

First, we want to demonstrate the simple geodesic paths and their
parametrization on multiple examples for a very simple scene. The
scene consists of a plane and three objects (a teapot, a monkey head
and a bunny). In Fig. 5, each row represents a different test sce-
nario. In the first column we can see the start configuration, i.e.
the two endpoints of the path as well as the best fitting cube for
the frustum. The resulting paths for each technique are displayed
in the 3 remaining columns. We show both the paths for e(t) (in
blue) and m(t) (in red). Our method usually produces paths that
“spread” more, i.e. in Euclidean space they are longer, form larger
arcs, and deviate more from the simple linear connection between

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://livelyliz.github.io/OptFlowCam/

8 of 13 L. Piotrowski, M. Motejat, C. Rössl, H. Theisel / OptFlowCam

configuration ours transform interpolation look-at interpolation

1

2

3

4

5

6

Figure 5: Simple test scenes. The camera moves from point A to point B. The blue points depict the path of the eye point •◦ e(t) while the
red points represent the path of the look-at point •◦ m(t). In the first column we can see the two endpoint configurations with the simplified
camera frustum. The second, third and fourth columns show the results for different interpolation methods. From left to right those are: our
method, a linear interpolation of the transforms based on [Ale02] and a linear interpolation of the eye point and look-at point.

the keyframes. Also, especially the second, fifth and sixth row show
that m(t) of our path has a very different parametrization than the
other two methods. It is denser at the beginning and end of the
path and sparser in the middle, which means that the camera moves
faster in the section between the interesting points (keyframes).
This showcases exactly the nature of the camera space metric. Just
as in the work covering the 2D space [vN03], it is more “expensive”
for the camera to move sideways as long as the frustum is small. So
the camera will move away from the target point first. Because of
this, the camera reveals more of the scene context that connects the
two target points which makes it easier to follow where the camera
is moving and how the two points are located in relation to each
other.

Fig. 6 shows an example for the Catmull-Rom spline where we
want to explore the mars rover Perseverance. Again, the blue curve
represents the path of the camera eye point and the red path the path
of the view target point. The path switches between different zoom
levels. At the beginning (keyframe A) the camera is very close to
the rover but then describes a wide arc to display it in its entirety.
This example demonstrates that with only a few keyframes, we can
explore the whole rover and switch between interesting areas of
different size and orientation and still produce a smooth path. The
scene features a lot of open space and contains only a few objects.
Still, we had to insert a keyframe (D) to resolve a collision with a
rock in the upper left corner of the image.

With Fig. 7 we want to illustrate that our method can also be

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

L. Piotrowski, M. Motejat, C. Rössl, H. Theisel / OptFlowCam 9 of 13

Figure 6: Exploring the Mars rover Perseverance. The path con-
sists of 6 keyframes (A-G) which are joined by a Catmull-Rom
spline. While keyframes A and F focus more on special details of
the rover, keyframes B, C and G show a larger area. Keyframe D
ensures that the path does not collide with the rock.

(a) (b)

Figure 7: Resolving collision in a gallery scene. (a) The original
Catmull-Rom spline path through a gallery. On the left and bottom
wall, the blue eyepoint path •◦ e(t) penetrates the geometry of the
wall. (b) The collision was resolved by inserting the lower case
letter keyframes b and d. The red look-at target path •◦m(t) changes
only slightly by this addition.

used for larger scenes and enclosed spaces. This examples features
a gallery with three images each at the west, north and east wall.
The path switches between keyframes that show an overview of
the whole wall and the detailed view of one specific image, so we
vary all parameters of the camera space quite a bit. A particular
difficulty in this scene compared to Fig. 6 is the enclosed space
where we need to avoid collisions. Our method does not naturally
avoid collisions because it has no scene information so the designer
of the path has to make sure to resolve them. This is in no way
different to the usual methods used for keyframing, so it is not a
disadvantage of our method. Fig. 7 compares the path before and
after the collision was resolved.

The greatest strength of our method lies in the extreme change of
scale of the view frustum. We demonstrate that by zooming in on

the mandelbulb (a 3D fractal) that was realized by two cameras: one
at a certain distance and one very close to the object. The scene was
rendered with the fractal software Mandelbulber [Man] which al-
lowed us to import and render the externally computed path. Fig. 8
presents a few frames rendered from the camera’s point of view.
We can see that the standard (Euclidean linearly interpolated) path
the software produces does not slowly zoom into the fractal like
our path does. So, while our camera path gives the impression of
constant speed, the other path seems to speed up towards the end.

Another scene we used is the space exploration software Gaia
Sky [SJMS19]. The use case is similar to that of the fractal be-
cause it needs to cover distances that differ by multiple orders of
magnitude (e.g., 1pc (3.0857×1016m) compared to 1AU (1.495×
1011m)). A section of the resulting path is pictured in Fig. 9 and the
accompanying video.

7. Discussion

Even though the spline interpolation method currently does not
have real-time performance, it is still fast enough for interactive
editing and designing paths by hand. The camera model we use
seems a bit unusual at first but in practice, a designer can still work
with it as they normally would, which we can see in the interactive
editing session provided as a video on the project webpage. The
only difference is that (either explicitly or implicitly) the current
point of interest (POI) needs be defined for each keyframe.

It should be noted that our paths may not be suitable for all sit-
uations. In scenes with narrow passages and high object density,
our paths can cause issues due to their zooming behavior. This can
create large arcs and increase the likelihood of collisions between
the eye point path and geometry. Although it is possible to resolve
collisions by adding more keyframes or adjusting the initial ones,
predicting how the path will react to changes remains challenging.
Related to this is the behavior of the path of the look-at point m(t).
If the keyframes are positioned on opposite sides of an object, the
path may pass through the object. Additionally, if the object is suf-
ficiently large, the camera may not move far enough away from
its surface to ensure a pleasant path. For example, this could be
an issue with a model of a planet where the camera keyframes are
located at the poles. The effect may be reduced by adding more
keyframes or utilizing a predefined m(t). Exploring the latter op-
tion in the future would be beneficial for the overall method. The
very particular behavior can also interfere with the artistic choices
of the designer of the camera path, so if absolute control is needed,
our paths should not be used. Nonetheless, they can provide a good
starting point and are viable to use alongside traditional keyfram-
ing.

Unlike standard interpolation techniques, our method requires
the user to specify a distance from the camera where the POI for
the current view is located. The only change for the user is that
the view direction from the eye point is now a general 3D vector
instead of a normalized 3D vector. Taking the POI into account is
only a minimal overhead in the interactive camera setting (as shown
in a video of the interactive session available on the project web-
site). Manually specifying interesting objects is also part of other
camera interaction tools [LC15] and would be required for track-
ing tasks anyway. However, we do not consider the object’s shape

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

10 of 13 L. Piotrowski, M. Motejat, C. Rössl, H. Theisel / OptFlowCam

Mandelbulber

ours

0 100 200 300 400 499 500

Figure 8: Mandelbulb fractal scene from the fractal generation software “Mandelbulber” [Man]. The frame numbers are written below the
images. The camera moves from a distance of 2 units to a distance of 1.4× 10−12 units to the surface. The perceived speed of the camera
increases for the standard linearly interpolated path (top). The difference is especially apparent in frame 499 to 500, where it “jumps” from
an overview to a close up. Our path (bottom) approaches the final position more gradually, as we can see when we compare frame 400 to
500.

standard

ours

0 100 200 300 400 500 600 700 800 900

Figure 9: Selected frames from the “Gaia Sky” [SJMS19] test scene. Frame numbers are written below the images. Frames 0 and 600 are
consecutive keyframes from a path consisting of a total of 4 keyframes. The camera’s distance to the sun (point of interest) in the first keyframe
is about 3.93 parsec (≈ 1212× 1014 km) and in the second keyframe it is about 3.22× 106 km. While with our approach the initial empty
space was traversed quickly and the camera gradually slows down as it approaches the sun (second keyframe), the standard Catmull-Rom
spline shows the sun in the keyframe only. In the example video of this scene it becomes even more apparent that a standard interpolation
approach produces unsatisfactory results.

In addition, the POI can be obtained automatically by conventional
positioning of the camera using ray casting from the eye point in the
view direction or by more sophisticated techniques that can identify
an interesting object in a scene.

Another limitation of the current approach are dynamic scenes
and tracking tasks. As introduced in this paper, the view direction
is determined by our method as the curve m(t) which makes it dif-
ficult to accurately track moving parts of the scene. However, if
would be possible to replace m(t) in the calculation of e(t) (Eq. (9))
with a user defined curve.

We want to emphasize that, to our knowledge, there are no other
techniques that can handle sclae changes as large as our method
does. The techniques mentioned in Section 3 mostly incorporate
cinematographic goals where a change from overview to detailed
view (or the other way around) is usually a change in the distance
to the POI of maybe a factor 10 to 100. While that suffices in most
camera planning tasks, we want to point out that for applications
such as space visualization but also general data visualization, there
might be more extreme cases that need to be handled. In our Gaia
Sky and Mandelbulb examples, our method can handle a change in
distance of a factor of up to 1012.

8. Conclusion

To summarize, this paper introduced a new interpolation scheme
for camera paths which was designed to be the geodesic of a metric
camera space. The metric we used is based on the average mag-
nitude of the flow in the 3D image. This flow is induced by the
movement of the camera and is independent of the scene that is ac-
tually visible. However, our camera model still incorporates what is
important to the scene by explicitly using the camera look-at point.
By simplifying the problem space, we were then able to calculate
the geodesic as a parametric curve. To go one step further, we also
showed that multiple camera poses can be connected by an inter-
polating spline.

The examples demonstrate that the resulting paths are distinct
from the paths produced by other simple interpolation schemes and
we believe them to be better suited for applications that need au-
tomatic viewpoint changes. Due to the automatic speed adjustment
that happens when the camera focus switches from an overview to
detailed view, we are able to generate smooth paths that create the
impression of a near-constant speed which is often not the case for
other methods. This is especially important when the scene in ques-
tions needs to handle multiple magnitudes of difference in scale,
e.g., when navigating in space exploration software like Gaia Sky.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

L. Piotrowski, M. Motejat, C. Rössl, H. Theisel / OptFlowCam 11 of 13

We want to note that our approach does not solve the general
problem of camera path planning. It does not automatically cal-
culate good viewpoints of the scene or a dynamic object or resolve
collisions with scene geometry. It could, however, be used conjunc-
tion with existing techniques if those techniques involve some kind
of viewpoint interpolation. Exploring this would be an interesting
direction for future work.

Acknowledgements

We want to thank NASA/JPL-Caltech for making 3D models of
their rovers and images of space available to the general public.

References
[AA10] ARGELAGUET F., ANDUJAR C.: Automatic speed graph

generation for predefined camera paths. In Smart Graphics.
Springer Berlin Heidelberg, 2010, pp. 115–126. doi:10.1007/
978-3-642-13544-6_11. 2

[Ale02] ALEXA M.: Linear combination of transformations. ACM Trans-
actions on Graphics 21, 3 (Jul 2002), 380–387. doi:10.1145/
566654.566592. 2, 7, 8

[AVF04] ANDUJAR C., VAZQUEZ P., FAIREN M.: Way-finder: guided
tours through complex walkthrough models. Computer Graphics Fo-
rum 23, 3 (2004), 499–508. doi:10.1111/j.1467-8659.2004.
00781.x. 2

[BG88] BARRY P. J., GOLDMAN R. N.: A recursive evaluation algo-
rithm for a class of catmull-rom splines. SIGGRAPH Comput. Graph.
22, 4 (Jun 1988), 199–204. doi:10.1145/378456.378511. 6

[CL03] CHRISTIE M., LANGUÉNOU E.: A constraint-based approach to
camera path planning. In Smart Graphics. Springer Berlin Heidelberg,
2003, pp. 172–181. doi:10.1007/3-540-37620-8_17. 2

[DC92] DO CARMO M. P.: Riemannian Geometry. Birkhauser Verlag
AG, 1992. 2

[DKC∗22] DEMIRALP A. C., KRÜGER M., CHAO C., KUHLEN T. W.,
GERRITS T.: Astray: A Performance-Portable Geodesic Ray Tracer. In
Vision, Modeling, and Visualization (2022), Bender J., Botsch M., Keim
D. A., (Eds.), The Eurographics Association. doi:10.2312/vmv.
20221208. 3

[Far02] FARIN G.: Curves and Surfaces for CAGD. Elsevier, 2002. doi:
10.1016/b978-1-55860-737-8.x5000-5. 1, 6

[GCLR15] GALVANE Q., CHRISTIE M., LINO C., RONFARD R.:
Camera-on-rails: automated computation of constrained camera paths.
In Proceedings of the 8th ACM SIGGRAPH Conference on Motion
in Games (New York, NY, USA, Nov. 2015), MIG ’15, Associa-
tion for Computing Machinery, p. 151–157. URL: https://doi.
org/10.1145/2822013.2822025, doi:10.1145/2822013.
2822025. 3

[GH21] GEBHARDT C., HILLIGES O.: Optimization-based user support
for cinematographic quadrotor camera target framing. In Proceedings
of the 2021 ACM Conference on Human Factors in Computing Systems,
CHI’21 (2021). doi:10.1145/3411764.3445568. 2

[GHN∗16] GEBHARDT C., HEPP B., NÄGELI T., STEVŠIĆ S.,
HILLIGES O.: Airways: Optimization-based planning of quadrotor tra-
jectories according to high-level user goals. In Proceedings of the 2016
CHI Conference on Human Factors in Computing Systems (May 2016),
CHI ’16, ACMAssociation for Computing Machinery, pp. 2508–2519.
doi:10.1145/2858036.2858353. 2

[HDL22] HISSBACH A.-M., DICK C., LAWONN K.: An Overview of
Techniques for Egocentric Black Hole Visualization and Their Suitabil-
ity for Planetarium Applications. In Vision, Modeling, and Visualization
(2022), Bender J., Botsch M., Keim D. A., (Eds.), The Eurographics As-
sociation. doi:10.2312/vmv.20221207. 3

[HLH∗16] HUANG H., LISCHINSKI D., HAO Z., GONG M., CHRISTIE
M., COHEN-OR D.: Trip synopsis: 60km in 60sec. Computer Graphics
Forum 35 (2016), 107–116. doi:https://doi.org/10.1111/
cgf.13008. 2

[JRT∗15] JOUBERT N., ROBERTS M., TRUONG A., BERTHOUZOZ F.,
HANRAHAN P.: An interactive tool for designing quadrotor camera
shots. ACM Transactions on Graphics (SIGGRAPH Asia 2015) 34, 6
(2015). doi:10.1145/2816795.2818106. 2

[LC15] LINO C., CHRISTIE M.: Intuitive and efficient camera control
with the toric space. 1–12. doi:10.1145/2766965. 3, 9

[Man] Mandelbulber v2 2.30. URL: https://github.com/
buddhi1980/mandelbulber2. 7, 9, 10

[MC00] MARCHAND E., COURTY N.: Image-based virtual camera mo-
tion strategies. In Proceedings of the Graphics Interface 2000 Confer-
ence (May 2000), pp. 69–76. doi:10.20380/GI2000.11. 2

[NAD∗17] NÄGELI T., ALONSO-MORA J., DOMAHIDI A., RUS D.,
HILLIGES O.: Real-time motion planning for aerial videography with
dynamic obstacle avoidance and viewpoint optimization. IEEE Robotics
and Automation Letters 2, 3 (2017), 1696–1703. doi:10.1109/LRA.
2017.2665693. 2

[NYP13] NAVA-YAZDANI E., POLTHIER K.: De casteljau’s algorithm
on manifolds. Computer Aided Geometric Design 30, 7 (2013), 722–
732. doi:10.1016/j.cagd.2013.06.002. 6

[Pet06] PETERSEN P.: Riemannian geometry. Springer, 2006. 2, 12

[SJMS19] SAGRISTÀ A., JORDAN S., MÜLLER T., SADLO F.: Gaia
sky: Navigating the gaia catalog. IEEE Transactions on Visualization
and Computer Graphics 25, 1 (Jan 2019), 1070–1079. doi:10.1109/
TVCG.2018.2864508. 7, 9, 10

[Str50] STRUIK D. J.: Lectures on Classical Differential Geometry. Ad-
dison Wesley Publishing Company Inc., 1950. 2

[vN03] VAN WIJK J. J., NUIJ W. A. A.: Smooth and efficient zooming
and panning. In IEEE Symposium on Information Visualization 2003
(IEEE Cat. No.03TH8714) (Oct 2003), IEEE Computer Society, pp. 15–
23. doi:10.1109/INFVIS.2003.1249004. 1, 3, 6, 8

[WH88] WARREN W. H., HANNON D. J.: Direction of self-motion is
perceived from optical flow. Nature 336, 6195 (Nov. 1988), 162–163.
doi:10.1038/336162a0. 1

[WR22] WU F., ROSENBERG E. S.: Adaptive field-of-view restriction:
Limiting optical flow to mitigate cybersickness in virtual reality. In
28th ACM Symposium on Virtual Reality Software and Technology (Nov.
2022), ACM. doi:10.1145/3562939.3565611. 1

[XYH∗18] XIE K., YANG H., HUANG S., LISCHINSKI D., CHRISTIE
M., XU K., GONG M., COHEN-OR D., HUANG H.: Creating and
chaining camera moves for quadrotor videography. ACM Transactions
on Graphics (Proc. SIGGRAPH) 37, 4 (2018), 1–13. doi:10.1145/
3197517.3201284. 2

[YSK09] YUKSEL C., SCHAEFER S., KEYSER J.: On the parame-
terization of catmull-rom curves. In 2009 SIAM/ACM Joint Confer-
ence on Geometric and Physical Modeling (Oct 2009), ACM. doi:
10.1145/1629255.1629262. 6

Appendix A: Derivation of the Equations of the Geodesic Path

In addition to Table 1, we use the following notation:

• qx,qv, qM for the 4D space describing the position and scale sub-
space of the 7D simplified camera space
• Ûx,Ûv,ÙM for the 3D space describing the rotation subspace of the

7D simplified camera space

To prove Theorem 1, we realize that M has the form

M = diag(qM(mx,my,mz,s), ÙM(φ,θ,ψ)) (41)

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://doi.org/10.1007/978-3-642-13544-6_11
https://doi.org/10.1007/978-3-642-13544-6_11
https://doi.org/10.1145/566654.566592
https://doi.org/10.1145/566654.566592
https://doi.org/10.1111/j.1467-8659.2004.00781.x
https://doi.org/10.1111/j.1467-8659.2004.00781.x
https://doi.org/10.1145/378456.378511
https://doi.org/10.1007/3-540-37620-8_17
https://doi.org/10.2312/vmv.20221208
https://doi.org/10.2312/vmv.20221208
https://doi.org/10.1016/b978-1-55860-737-8.x5000-5
https://doi.org/10.1016/b978-1-55860-737-8.x5000-5
https://doi.org/10.1145/2822013.2822025
https://doi.org/10.1145/2822013.2822025
https://doi.org/10.1145/2822013.2822025
https://doi.org/10.1145/2822013.2822025
https://doi.org/10.1145/3411764.3445568
https://doi.org/10.1145/2858036.2858353
https://doi.org/10.2312/vmv.20221207
https://doi.org/https://doi.org/10.1111/cgf.13008
https://doi.org/https://doi.org/10.1111/cgf.13008
https://doi.org/10.1145/2816795.2818106
https://doi.org/10.1145/2766965
https://github.com/buddhi1980/mandelbulber2
https://github.com/buddhi1980/mandelbulber2
https://doi.org/10.20380/GI2000.11
https://doi.org/10.1109/LRA.2017.2665693
https://doi.org/10.1109/LRA.2017.2665693
https://doi.org/10.1016/j.cagd.2013.06.002
https://doi.org/10.1109/TVCG.2018.2864508
https://doi.org/10.1109/TVCG.2018.2864508
https://doi.org/10.1109/INFVIS.2003.1249004
https://doi.org/10.1038/336162a0
https://doi.org/10.1145/3562939.3565611
https://doi.org/10.1145/3197517.3201284
https://doi.org/10.1145/3197517.3201284
https://doi.org/10.1145/1629255.1629262
https://doi.org/10.1145/1629255.1629262

12 of 13 L. Piotrowski, M. Motejat, C. Rössl, H. Theisel / OptFlowCam

with

qM = diag
Å

1
s2 ,

1
s2 ,

1
s2 ,

1
4s2

ã
, ÙM =

Ñ 1
6 0 − sin θ

6
0 1

6 0
− sin θ

6 0 1
6

é
.

(42)
This shows that we can treat the (mx,my,mz,s) subspace and the
(φ,θ,ψ) subspace independently when searching for geodesics. A
geodesic in (mx,my,mz,s) subspace is a curve qc(t) fulfilling the
geodesic equation [Pet06]

q̈c = 1
2

qM−1
Ä
∇(q̇cT

qM q̇c)−2 (∇ qM q̇c) q̇c
ä

(43)

with

qM = qM(qc(t)) = diag
Å

1
s(t)2 ,

1
s(t)2 ,

1
s(t)2 ,

1
4s(t)2

ã
(44)

∇(q̇cT
qM q̇c) =

Ä
q̇cT

qMmx q̇c, · · · ,q̇cT
qMs q̇c
äT

(45)

∇ qM q̇c =
Ä

qMmx, qMmy, qMmz, qMs
ä

q̇c (46)

and q̇c, q̈c are the first and second derivatives of qc(t), and qMmx =
qMmx(qc(t)), qMmy = qMmy(qc(t)), qMmz = qMmz(qc(t)), qMs = qMs(qc(t))
are directional derivatives of qM(mx,my,mz,s) at qc(t). Here, we are
using a matrix notation to avoid introducing Christoffel symbols.
Setting

qc(t) =
Å

m(t)
s(t)

ã
=

Å
m0 +m(t) d

s(t)

ã
, (47)

(43) is a system of ODEs for the unknown function m(t), s(t). For-
tunately, it has a closed-form solution

m(t) =−1
2

p1 tanh(p2 t + p3)+ p4 (48)

s(t) =
p1

cosh(p2 t + p3)
(49)

and p1, p2, p3, p4 are free parameters.

To show that this indeed fulfills (43), we apply elementary dif-
ferentiation rules to (47)–(49), and get

q̇c =
Å

ṁ(t) d
ṡ(t)

ã
, q̈c =

Å
m̈(t) d

s̈(t)

ã
(50)

with

ṁ(t) =−1
2

p1 p2

(cosh(p2 t + p3))
2 (51)

m̈(t) =
p1 p2

2 sinh(p2 t + p3)

(cosh(p2 t + p3))
3 (52)

ṡ(t) =− p1 p2 sinh(p2 t + p3)

(cosh(p2 t + p3))
2 (53)

s̈(t) =

Ä
(cosh(p2 t + p3))

2−2
ä

p1 p2
2

(cosh(p2 t + p3))
3 . (54)

Further, the directional derivatives of qM at qc(t) are

qMmx(qc(t)) = qMmy(qc(t)) = qMmz(qc(t)) = 0 (55)

qMs(qc(t)) =−diag
Å

2
s(t)3 ,

2
s(t)3 ,

2
s(t)3

1
2s(t)3

ã
. (56)

This gives

∇(q̇cT
qM q̇c) =

Ç
0

− 1
2

p2
2 cosh(p2 t+p3)

p1

å
(57)

(∇ qM q̇c) q̇c =

Ö
− p2

2 sinh(p2 t+p3)
p1 cosh(p2 t+p3)

d

− 1
2

p2
2(sinh(p2 t+p3))

2

p1 cosh(p2 t+p3)

è
. (58)

Further,

qM−1 = (qM(qc(t)))−1 = diag
Ä

s(t)2,s(t)2,s(t)2,4s(t)2
ä
. (59)

Then (57), (58), (59) together with (50), (51), (53) proof (43). To
show the equal-speed parameterization in (mx,my,mz,s) space, we
have to prove that q̇c(t)T

qM(qc(t)) q̇c(t) is constant over time, i.e. inde-
pendent of t. In fact, from (50), (51),(53),(46), and keeping in mind
that d is a unit vector, we get

q̇cT (t) qM(qc(t)) q̇c(t) =
(p2

2

)2
. (60)

To ensure end point interpolation of of the geodesic qc(t), we have
to set the free parameters p1,p2,p3 and p4 to fulfill

s(0) = s0 =
p1

cosh(p3)
, s(1) = s1 =

p1
cosh(p2 + p3)

(61)

m(0) = 0 =−1
2

p1 tanh(p3)+ p4 (62)

m(1) = d =−1
2

p1 tanh(p2 + p3)+ p4. (63)

The solution of (61)–(63) is

p1 = s0 cosh(r0) , p2 = r0− r1

p3 =−r0 , p4 =−
s0 sinh(r0)

2
with r0,r1 as defined in Eq. (29). In order to compute geodesics
in (φ,θ,ψ) subspace with metric ÙM, we consider the rotation ma-
trix R(t) from the Euler angles o(t) = (φ(t),θ(t),ψ(t)) by applying
Eq. (26). This gives a time derivative of R(t) as

Ṙ(t) = R(t)

Ñ
0 k3 −k2
−k3 0 k1
k2 −k1 0

é
(64)

with

k =

Ñ
k1
k2
k3

é
=

Ñ
sin(θ) ψ̇− φ̇

−sin(φ)cos(θ) ψ̇− cos(φ) θ̇

−cos(φ)cos(θ) ψ̇+ sin(φ) θ̇

é
(65)

that describes a differential rotation around the axis k with the an-
gular speed

‖k‖=
»
−2 sin(θ) φ̇ ψ̇+ φ̇2 + θ̇2 + ψ̇2. (66)

At the same time, the differential distance in the direction ȯT in the
metric space ÙM is »

ȯT ÙM ȯ =
1√
6
‖k‖. (67)

This means that the distance in o is proportional to the angular
speed of R(t). Because of this, geodesics between two orientation
matrices R0, R1 are computed in the following way: First, find

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

L. Piotrowski, M. Motejat, C. Rössl, H. Theisel / OptFlowCam 13 of 13

(a)

0

500

1000

1500

2000

2500

f=
1

ayz=0.1

0.25 0.5 0.75 1
0
5
10
15
20
25

ayz=1

0.25 0.5 0.75 1
0
5
10
15
20
25

ayz=10

0.25 0.5 0.75 1
0
5
10
15
20
25

0

5000

10000

f=
10

0.25 0.5 0.75 1
0
5
10
15
20
25

0.25 0.5 0.75 1
0
5
10
15
20
25

0.25 0.5 0.75 1
0
5
10
15
20
25

0.0 0.2 0.4 0.6 0.8

0

50000

100000

f=
10
0

0.25 0.5 0.75 1
0
5
10
15
20
25

0.0 0.2 0.4 0.6 0.8

0.25 0.5 0.75 1
0
5
10
15
20
25

0.0 0.2 0.4 0.6 0.8 1.0

0.25 0.5 0.75 1
0
5
10
15
20
25

ours transform interp. look- at interp.

(b)

0

10000

20000

30000

C
on
di
tio
n
N
um
be
r

0.05 0.1 0.15
0

200

400

600

800

1000

1200

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

T
ra
ce

0.05 0.1 0.15
0

2

4

6

8

10

(c)

Figure 10: (a) The curves we use for comparison in this figure. The curve direction is from left to right. While the curve for the transformation
interpolation and the look-at interpolation are similar, their eye point path is not identical. (b) The velocity plot for each curve and different
f and ayz. Note the scale of the vertical axis for each row. The insets show the plot for the velocity of our curve as a close-up. (c) The trace
and condition number of the 9D metric “M(ĉ(t)) for our path with f = 1 and ayz = 1. The insets show a close-up for 0≤ t ≤ 0.2.

the constant rotation axis k and rotation angle ξ such that rota-
tion around k with angle ξ transforms R0 to R1. Then let R(t) the
rotation around k with angle t ξ for t ∈ [0,1]. This is done in Sec-
tion 4.4.

Appendix B: Justification of the Simplification from 9D to 7D

To give evidence that the simplification of the camera space metric
is a sensible choice to make, we show that geodesics produced with
the simplified metric are still closer to being a geodesic in the orig-
inal metric, in particular in comparison to the alternatives we chose
in Section 6. For that, we need to recall Section 2 and Theorem 1,
which stated that the geodesic is a curve of constant velocity in the
metric space. This means that

ċ(t)T M(c(t)) ċ(t) = const. ∀ t ∈ [0,1]. (68)

What we want to show is that the velocity calculated with the 9D
metric instead of the 7D metric is still close to being constant. We
are converting the 7D camera path c(t) to its 9D equivalent ĉ(t) by
using the same m(t) and o(t) and converting the cube to a camera
frustum with aspect ratios

axy =
sx
sy
, ayz =

sy
sz
. (69)

Additionally, sx, sy, sz need to satisfy s = (sx · sy · sz)
1
3 .

As an example we choose the path depicted in Fig. 10a because it
features different scales for ‖m(t)−e(t)‖ at the start and end point
without being too extreme. Specifically, ‖m0−e0‖= 0.651126 and

‖m1− e1‖ = 0.0651126 while the Euclidean distance between the
look at points is ‖m0−m1‖= 47.3825.

Fig. 10b shows the result of the velocity evaluation with the 9D
metric for all three paths and different values for f and ayz. The
aspect ratio axz = 1.78 = (16 : 9) is held constant. As we can see,
the variation in speed is much larger for the look-at interpolation
and the transformation interpolation than it is for our method. It is
especially noticeable at the end of the path when the camera moves
closer to the look-at point. This indicates, that even in the 9D metric
space, our camera path is much closer to a geodesic than alternative
paths. However, the inset in each plot shows that our path is not an
actual geodesic in the 9D space because the velocity is not constant.
For f = 100 and ayz = 1, the real frustum is close to the best-fitting
cube from the simplified camera space and consequently, the veloc-
ity plot for our path is the closest to being constant. We conclude
that the simplification from 9D to 7D camera space does not give
significantly different geodesics but simplifies the problem of com-
puting geodesics significantly.

Fig. 10c presents the condition number and the trace of the 9D
metric along our path as it is depicted in Fig. 10a. While the condi-
tion number is largest when the eye point is the farthest away from
the look-at point and then rises again at the end of the path, the trace
is larger when the camera is close to the look-at point. Our path is
already close to being geodesic, so we can assume that the behav-
ior for the real 9D geodesic path will be similar. In consequence, a
numerical method would need to be able to deal with the variations
in both condition number and trace to converge to a solution.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

