
Eurographics Symposium on Geometry Processing (2007)
Alexander Belyaev, Michael Garland (Editors)

Elastic Secondary Deformations by Vector Field Integration

Wolfram von Funck1 Holger Theisel2 Hans-Peter Seidel1

1MPI Informatik, Germany
2Bielefeld University, Germany

Abstract
We present an approach for elastic secondary deformations of shapes described as triangular meshes. The de-
formations are steered by the simulation of a low number of simple mass-spring sets. The result of this simula-
tion is used to define time-dependent divergence-free vector fields whose numerical path line integration gives
the new location of each vertex. This way the deformation is guaranteed to be volume-preserving and without
self-intersections, giving plausible elastic deformations. Due to a GPU implementation, the deformation can be
obtained in real-time for fairly complex shapes. The approach also avoids unwanted intersections in the case of
collisions in the primary animation. We demonstrate its accuracy, stableness and usefulness for different kinds of
primary animations/deformations.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

Animations and deformations are standard problems in
Computer Graphics for which a variety of solutions exist.
For the treatment of many applications, a deformation or
animation can be divided into a primary and a secondary
structure [OZH00]. A primary animation/deformation per-
forms rather large and global changes of the shape. Typ-
ical examples are keyframe animations, interactive move-
ment of solids, rigid body simulations including collision
detection, or the interactive deformation of shapes. In ad-
dition to this, secondary deformations perform rather small
changes of the shapes but contribute significantly to the re-
alism of the scene. Secondary deformations can be explic-
itly modeled (e.g., facial animations or lip synchronization
in animated full-body human characters), or they can be de-
rived from the primary animation/deformation by assuming
certain elastic material properties of the shape. An example
of secondary deformations are jiggling and bouncing effects
on the moving skin on a human body [PH06]. Part 1 of the
accompanying movie (in the following called movie 1) il-
lustrates a primary motion without and with secondary de-
formation.

This paper presents an approach to model elastic sec-
ondary deformations by constructing and integrating time-
dependent divergence-free vector fields. Elastic deforma-

tions are connected to certain intrinsic forces and tend to
move back to the original shape if these forces cease. This
way, jiggling and oscillating effects can be represented.
The deformation described here is steered by incorporat-
ing basic mechanical laws coming from the primary ani-
mation/deformation. In fact, a low number of mass-spring
sets is simulated to steer the deformation. The results of this
simulation are used for an on-the-fly construction of time-
dependent vector fields, delivering the new position of each
vertex by a numerical path line integration. It guarantees that
the deformations are volume-preserving, and without (local
or global) self-intersections.

To model secondary deformations which are derived from
a primary motion, two general approaches are possible.
Firstly, physically based approaches consider the inherent
structure of the shape to simulate the deformations. Sec-
ondly, heuristic approaches describe the deformation by a
low number of parameters in order to obtain plausible and
fast deformations without the explicit consideration of phys-
ical laws. The technique presented here can be considered as
a compromise between the two general approaches. While
the deformation is described by a simple heuristic model (a
lower number of mass-spring sets), their kinematic simula-
tion is exact as well as the deformation itself is guaranteed to
preserve important physical properties (volume, avoidance

c© The Eurographics Association 2007.



von Funck et al. / Elastic Secondary Deformations by Vector Field Integration

of self-intersections). In particular, it turns out that these
properties are strong enough to yield plausible deformations
if the mass-spring sets are placed in an appropriate way.

The rest of the paper is organized as follows: section 2
reviews related work. Section 3 describes our vector field
based approach. Section 4 describes how our model can han-
dle collisions in the primary animations. Section 5 describes
details of our GPU based implementation. Section 6 applies
our technique to different approaches for the primary anima-
tions: interactive moving of solid bodies, keyframe anima-
tions, rigid body simulations, and interactive deformations.
We evaluate and compare our method in section 7, while
conclusions are drawn in section 8.

2. Related work

There is a huge body of approaches to define animations and
deformations. Here we only mention approaches which ex-
plicitly deal with secondary deformation/motion, or which
can incorporate secondary motion effects. In general, all ap-
proaches aim in finding appropriate combinations of phys-
ically exact simulations and simplifying assumptions to get
plausible deformations at interactive rates.

Mass-spring systems are an intuitive technique to de-
form objects realistically. Initially used for facial model-
ing [PB81], other fields like skin, fat and muscle simula-
tion [CHP89, TW90, TW91, NT98] and interactive anima-
tion of structured deformable objects [DSB99] have been
addressed using mass-spring systems. In order to simulate
larger mass-spring systems in real-time, [GEW05] devel-
oped a GPU implementation which simulates spring elon-
gation and compression on the graphics card and renders the
deformed surface.

The Finite Difference Method has been introduced by
[TPBF87] as a tool to simulate elastically deformable mod-
els. The Finite Element Method has been used to simu-
late elastic [DDCB01, GKS02, MDM∗02] and elastoplas-
tic fracturing [OBH02, MG04] material. The method has
also been used to obtain interactive skeleton-driven de-
formations [CGC∗02, ZG05] and physically based rigging
of deformable characters [CBC∗05]. By employing modal
analysis, which reduces the computational complexity of
such simulations remarkably, [JP02,CK05] were able to ob-
tain complex deformations at ineractive rates on the GPU.
[TBHF03] used the Finite Volume Method to simulate skele-
tal muscle. [JP99] proposed the Boundary Element Method
for simulating deformable objects accurately and interac-
tively.

The above-mentioned approaches have in common that
they rely on connected structures like mass-spring networks,
grids or volumetric meshes. In contrast to this, mesh free
methods [DC96, Ton98] abandon connectivity. Point based
animation allows for animation of elastic, plastic and melt-
ing objects [MKN∗04]. Here, both the particles on which

the simulation is carried out and the object surface are rep-
resented by points without connectivity.

Trying to strictly adhere the laws of physics in order to
get realistic deformations often comes at the cost of perfor-
mance. This makes it difficult to simulate scenarios of mod-
erate complexity in real-time. Non-physically motivated ap-
proaches sacrifice realism for performance. [MHTG05] pro-
posed a geometrically motivated model for simulating de-
formable objects. This mesh free approach replaces energies
by geometric constraints and forces by distances between
current and goal positions. This way, the dynamic simula-
tion is efficient and unconditionally stable.

The idea of constructing divergence-free vector fields to
define interactive (primary) deformations was recently intro-
duced in [vFTS06]. There, a 3D vector field v is constructed
as

v(x) = ∇p(x)×∇q(x) (1)

where p,q are C2 continuous piecewise scalar fields which
are defined over three different regions. The regions are set
implicitly by a scalar field r(x) and two thresholds ri,ro. In
the inner region (i.e., at locations x with r(x) < ri), p and q
are certain simple analytical (e.g., linear or quadratic) scalar
fields e(x) and f (x) respectively. In the outer region (ro ≤ r),
p and q hold p = q ≡ 0. In the intermediate region, p and
q are smoothly blended as p = (1 − b) · e + b · 0 and q =
(1− b) · f + b · 0 where b = b(r(x)) is a blending function
given in Bezier representation as

b(r) =
4

∑
i=0

wi B4
i (

r− ri

ro − ri
). (2)

In (2), B4
i describe the well-known Bernstein polynomials,

and (w0, ...,w4) = (0,0,0,1,1). [vFTS06] considers different
choices of r,e, f for getting different modeling metaphors.
Due to this direct construction of divergence-free vector
fields, the approach is efficient, and at the same time pro-
duces physically plausible results thanks to the volume-
preservation and the prevention of self-intersections.

3. Our approach

The main idea of our approach is to control the secondary
deformation by a low number of parameters which we de-
scribe as a number of mass-spring sets (section 3.1). For
each of the mass-spring sets we define a local deformation
which is based in the integration of a divergence-free vector
field (section 3.2). Based on this, different ways of compos-
ing them are possible (section 3.3). Also, the impact of a
particular deformation can be limited to certain parts of the
shape (section 3.4). Section 3.5 describes how to place and
parametrize the mass-spring sets. Section 3.6 describes how
a level-of-detail approach can be incorporated into our con-
cept.

c© The Eurographics Association 2007.



von Funck et al. / Elastic Secondary Deformations by Vector Field Integration

(a)

p

(b)

p

q

k

c

q

m

x

b

a
r

o

mq

Figure 1: (a) a mass-spring set: p is a fixed point inside
the shape, q is a freely moving point, equipped with a mass
mq; (b) configuration to define deformation dp,q,ro and vec-
tor field wp,q,ro .

3.1. Mass-spring sets

Mass-spring systems are popular and well-understood tools
to simulate various phenomena, among them deformations.
Here we use a very simple one-degree-of-freedom mass-
spring system and call it a mass-spring set (this naming
should reflect that this is indeed one of the simplest mass-
spring systems one can imagine). It consists of two points
p,q which are connected by a spring with the stiffness k and
the damping parameter c. The spring has a length of zero,
i.e. p and q coincide in the rest state. While p is considered
as a fixed anchor point inside a shape, q is equipped with
a certain mass mq. Then the position of q can be simulated
by basic rules of mechanics if the shape (and therefore p in-
side it) undergoes a primary motion. In fact, our simulation
includes spring damping, inertia, and the repeated conver-
sion of potential and kinetic energy. See the corresponding
section on mass-spring systems in [NMK∗06] for an expla-
nation of these methods. Figure 1a illustrates a mass-spring
set. Movie 3 (part 2) shows a simulation of 7 mass-spring
sets with different characteristics using an interactive mov-
ing of the shape.

3.2. Constructing the deformation

For a mass-spring set with the points p,q at a certain loca-
tion, we define a space deformation dp,q,ro : IR3 → IR3 with
the following properties:

dp,q,ro(p) = q (3)

dp,q,ro(x) = x for dist(x,pq) > ro (4)

dp,q,ro is C2 continuous (5)

dp,q,ro is volume preserving (6)

dp,q,ro does not produce self-intersections (7)

where dist(x,pq) describes the minimal Euclidean distance
between a point x and the line segment pq. The positive
value ro controls the area of impact of the deformation. The
main idea to get dp,q,ro is to construct a divergence-free time-
dependent vector field vp,q,ro(x, t) and obtain dp,q,ro as the
result of a path line integration of vp,q,ro . To do so, we de-
fine the auxiliary vector field

wp,q,ro(x, t) = γ(α a+β b) (8)

p

t=0 t=1/2 t=1

p p

q q q

Figure 2: vp,q,ro(x, t) with t = 0,
1
2 ,1 for ro = 1

2‖q−p‖.

with

a = q−p , m = (1− t) p + t q , b = x−m (9)

α = r2
o −5 b2

, β = 4 ab , γ =

(

r2
o −b2

)3

(

r2
o
)4 .

Figure 1b illustrates this. Then it is a straightforward exer-
cise in algebra to show that wp,q,ro has the following proper-
ties:

wp,q,ro ((1− t) p + t q , t) = q−p(10)

wp,q,ro = 03 for r2
o = b2 (11)

∇wp,q,ro = 03,3 , ∇∇wp,q,ro = 03,3,3 for r2
o = b2 (12)

div(wp,q,ro) ≡ 0(13)

where 03, 03,3, 03,3,3 are the 3D zero tensors of order 1,2,3,
respectively. (11) and (12) mean that for r2

o = b2, wp,q,ro and
its first and second order partials vanish. Now we can define
vp,q,ro as

vp,q,ro(x, t) =

{

wp,q,ro(x, t) for b2 ≤ r2
o

03 else
(14)

and dp,q,ro as the result of a path line integration over the
time interval [0,1]:

dp,q,ro(x) = x+
Z 1

0
vp,q,ro(x(s),s) ds. (15)

Then (11), (12) and (14) give that vp,q,ro is C2 continuous,
which implies (5). (10) yields (3). (4) follows from the piece-
wise definition of vp,q,r0 in (14). (6) and (7) follow directly
from (13) [vFTS06]. Note that vp,q,ro is a piecewise polyno-
mial vector field of degree 8. Figure 2 illustrates vp,q,ro(x,0),
vp,q,ro(x,

1
2 ), vp,q,ro(x,1) for ro = 1

2‖q − p‖ using illumi-
nated stream lines [ZSH96]. Movie 2 illustrates dp,q,ro as
path line integration of vp,q,ro .

Comparison with [vFTS06]:
The idea of defining volume-preserving deformations by in-
tegrating divergence-free vector fields was recently intro-
duced in [vFTS06]. The framework presented there was used
for the definition of interactive primary deformations (see
section 2 for a short description). Note that the vector field
v constructed by (1)– (2) as used in [vFTS06] is a piecewise
C1 continuous vector field of degree 16 (if r describes the
the Euclidean distance to a center point). The vector field

c© The Eurographics Association 2007.



von Funck et al. / Elastic Secondary Deformations by Vector Field Integration

vp,q,ro defined by (8)–(14) appears to be significantly sim-
pler and smoother: C2 continuous and of degree 8. This en-
hancement is achieved by letting the inner ring of the defor-
mation collapse to a point, making the expensive (in terms of
polynomial degree) C1 joint between inner and intermediate
region unnecessary. In fact, wp,q,ro was constructed similar
to [vFTS06] as

r(x) = (x−m)2
, ri = 0 (16)

and wp,q,ro = ‖q−p‖·(∇p×∇q) with p = (1−b) ·e+b ·0
and q = (1− b) · f + b · 0 where e, f are linear scalar fields
with (∇e)2 = (∇ f )2 = 1, ∇e ·∇ f =∇e ·a =∇ f ·a = 0, and
e(m) = f (m) = 0. Since this way the inner region vanishes,
the blending function can be simplified to

b(r) =
2

∑
i=0

wi B2
i (

r− ri

ro − ri
). (17)

with (w0, ...,w2) = (0,1,1). This explains the reduction in
the polynomial degree in wp,q,ro . To explain the improved
continuity, we note that v constructed by (1)–(2) is actually
C1 at the joint between inner and intermediate region, and it
is C2 between intermediate and outer region. Since we make
the inner region disappear, the remaining global continuity
is C2.

3.3. Composition of vector field integration

In general, more than one mass-spring set is independently
used to get the desired elastic deformation. Since any linear
combination or time-concatenation of divergence-free vec-
tor fields is divergence-free as well, there are two simple
options to compose two or more mass-spring sets. Let two
mass spring sets be given by p1,q1,ro1 and p2,q2,ro2 re-
spectively. Then we use the following compositions:

1. Adding the vector fields: the deformation is obtained by a
path line integration of v(x, t) = vp1,q1,ro1 +vp2,q2,ro2 over
the time interval [0,1].

2. Concatenating the vector field: here

v(x, t) =

{

vp1,q1,ro1(x, t) for 0 ≤ t < 1
vp2,q2,ro2(x, t −1) for 1 ≤ t ≤ 2

is integrated over the time interval [0,2].

Note that concatenating the vector fields corresponds to a
concatenation of dpi,qi,roi : the integration of v(x, t) leads to
dp2,q2,ro2(dp1,q1,ro1(x)).

In order to deform smaller details of the shape correctly,
they are deformed by first using an addition of vector fields
with small influences. Then the shape is further deformed by
concatenating an addition of vector fields with larger influ-
ences. Figure 3 illustrates this and Section 5.1 gives more
details about our implementation of this approach. Movie 3
(part 3) shows the composition of deformations coming from
7 mass-spring sets for the cow model.

Figure 3: For 0 ≤ t < 1, small details are deformed using
an addition of vector fields. Afterward, for 1 ≤ t ≤ 2, larger
areas are deformed using vector fields with larger influence.

3.4. Deformation skinning

Being a space deformation, the described deformation tech-
nique may not produce desirable results if independent parts
of the shape are spatially close to each other. For instance,
suppose a mass-spring set is placed in the right foot of
the camel model (figure 4 left). When the spring is elon-
gated, the left leg can enter the influence region and will be
deformed as well. In order to prevent such situations, we
need a mechanism to constrain the deformation to a spe-
cific segment of the shape. We use an extension to a standard
technique called matrix palette skinning (indexed skinning),
which is both GPU-friendly and straightforward to imple-
ment [LKM01]. It works by assigning a set of usually four
index-weight pairs to each vertex. Each index points to an
element of a matrix palette, which is an array of 4x4 matri-
ces defining affine transformations. A vertex is deformed by
computing its transformations for all four indices and com-
puting the weighted sum of them. Usually, an animated char-
acter is segmented into its different body parts, and a trans-
formation is assigned to each segment. The weight for this
transformation is 1 for most vertices of the segment – only
at the joints, where two or more segments meet, the weights
are chosen such that a smooth blending between the dif-
ferent transformations is achieved. Usually the weights are
specified together with a skeleton (which defines the affine
transformations of the segments) by an animator in a 3D
authoring tool. We extend this by additionally assigning a
list of mass-spring sets to each segment. Each list of mass-
spring sets defines a composed vector field. This means that
instead of a palette of matrices, we have a palette of ma-
trices plus vector fields. The extended skinning algorithm
works basically the same as before: the vertex is deformed
by transforming it using matrix multiplication and by after-
ward deforming it using vector field integration, for each
of the four palette indices. The resulting vertex is again the
weighted sum of these four deformed positions. Section 5.2
describes the implementation in more detail. Figure 4 and
movie 4 show how a mass-spring set deforms a leg of the
camel model without affecting other body parts by using
deformation skinning. Note that this surface-based skinning
does not prevent global self-intersections and does not ex-
actly preserve volume at the parts where different deforma-

c© The Eurographics Association 2007.



von Funck et al. / Elastic Secondary Deformations by Vector Field Integration

Figure 4: Using deformation skinning, the deformation de-
scribed by the mass-spring set can be constrained to one leg
of the camel.

tions are blended. However, global self-intersections can be
avoided by performing an additional collision detection be-
tween shape segments. The areas where multiple deforma-
tions are blended (e.g. at the joints of a character) are usu-
ally small, so the effect of non-exact volume-preservation is
negligible.

3.5. Setting the mass-spring sets

The plausibility of our approach strongly depends on num-
ber, location and parametrization of the mass-spring sets.
Since it turns out that a rather low number of mass-spring
sets already gives pleasing results and that the location of
"good" sets follows the shape intuitively, we left the placing
of the mass-spring sets to the user. However, in our experi-
ments we realized a number of rules of thumbs to get pleas-
ing secondary deformations.

Mass-spring sets should be placed close to the center of
large homogeneous areas. If only one mass-spring set is
used, it should be placed close to the center of gravity of
the object. Furthermore, the area of influence should ap-
proximately reflect the size of the object. In addition, fur-
ther mass-spring sets with smaller area of influence can be
placed into distant parts of the shape like head, legs or ears.
Furthermore, mq,k,c have to be set for each mass-spring
set. Throughout this paper we have chosen mq proportional
to the area of influence while k is constant for all springs.
That way, mass-spring sets with larger influence move more
slowly than others, resulting in a composition of motions
with different frequencies. Movie 3 (part 1) shows how 7
mass-spring sets are set and parametrized for the cow model.

3.6. Level of detail

Motivated by the fact that mass-spring sets which are far
away from the viewer and/or have a small influence ra-
dius are visually not significant, we can take advantage of
a simple level of detail technique in order to increase per-
formance. Let p be the anchor point and ro be the radius of
influence of a mass-spring set. Given the distance d between
p and the viewer, we use this mass-spring for deformation

Figure 5: Level of detail: with increasing distance, more and
more mass-spring sets can be omitted.

only if ro > t · d, where t is a user defined threshold. That
way, only mass-spring sets that are close enough and whose
influence is large enough are considered during deformation.
Figure 5 illustrates this.

4. Collision handling

Realistic secondary deformations should be able to react
properly on collisions of the shape coming from the pri-
mary animation. In this section we show that our approach
does so by simply concatenating an additional vector field
to the integration. This enables us to combine our technique
with a rigid body simulation. The idea is to allow objects
to penetrate during the rigid body simulation and adding a
repelling force which is proportional to the depth of pene-
tration. This way we can simulate elastic collisions. Movie
5 (part 1) shows an example. In order to remove the penetra-
tion, we deform the soft object by integrating a new concate-
nated vector field up,q,ri,ro(x, t). Movie 5 (part 2) illustrates
this.

4.1. Definition of up,q,ri,ro

The construction of up,q,ri,ro follows [vFTS06] in the fol-
lowing way: a center point c should be translated along a
direction vector d to c + d by integrating over a time in-
terval of 1; ri and ro denote the inner and outer radius of
the deformation. We apply (1)–(2) with the choices r(x, t) =
‖ c+ t d−x ‖ and e(x, t), f (x, t) are linear scalar fields with
(∇e)2 = (∇ f )2 = 1, ∇e · ∇ f = ∇e · d = ∇ f · d = 0, and
e(c + t d, t) = f (c + t d, t) = 0. Then we get up,q,ri,ro(x, t) =
‖d‖ · (∇p(x, t)×∇q(x, t)).

4.2. Placing the vector field

After defining up,q,ri,ro(x, t), we need to place it such that
it deforms the shape realistically under collision. More pre-
cisely, we have to choose c, d, ri,ro such that interpenetra-
tions between the elastic body and the collision geometry
are canceled. We assume that the collision geometry (i.e.
the objects that the body can collide with) is decomposed
into convex hulls. While automatic methods exist [LA04],
we decomposed our scenes manually. As described in Sec-
tion 3.4, the mesh of the elastic object may be decomposed

c© The Eurographics Association 2007.



von Funck et al. / Elastic Secondary Deformations by Vector Field Integration

Figure 6: (a) Body B penetrates collision geometry C with
penetration depth d. (b) The vector field is placed by setting
parameters p,q,ri,ro appropriately.

into different segments. From now on, we treat each seg-
ment independently as an elastic body. Let B be an elastic
body penetrating a convex part C of the collision geome-
try. Furthermore let cB be the center of gravity of B and
cC be the center of gravity of C. Then, for ri we choose
the maximum distance between cC and all points in C, i.e.
ri = max{‖x− cC‖ : x ∈ C}. That way, we make sure that
C lies completely in the inner region with the result – as we
will see later – that no point of B ever enters C. The pa-
rameter ro basically determines the (visual) softness of the
material: the smaller ro, the softer appears the material. We
found that setting ro − ri proportional to the size of the body
gives pleasing results. To do that, we use the maximum dis-
tance of all points of B from cB as a measure for the size of
B and compute ro = ri + s ·max{‖x− cB‖ : x ∈ B}, where s
is a user defined softness factor. In our tests we used values
between 1 and 2. Of course, ri and ro can be precomputed
for better performance.

To simplify matters, we allow only translations along the
vector cB − cC. In order to determine c and d, we first com-
pute the maximum penetration depth d of B in C along the
vector r = cC−cB

‖cC−cB‖
. Figure 6 illustrates this. Then we can

set c = cC +dr
and d = cC − c. If we now center C at c instead of cC, C
and B would touch each other but not interpenetrate. Fur-
thermore, since all points of C are completely in the inner
region, where we have a constant vector field, no point of
B can ever enter C during integration. Altogether, the defor-
mation defined by up,q,ri,ro(x, t) cancels the penetration of B
into C by pushing the penetrating parts of B out of C.

In the case of multiple collisions, for each convex colli-
sion geometry C that is penetrated by B, we compute the
corresponding vector field up,q,ri,ro(x, t) as described above.
These fields are summed up and finally concatenated with
the vector field computed from the mass-spring sets (Section
3.2).

5. Implementation

The presented deformation technique is totally independent
of any mesh connectivity information or control lattices like

Figure 7: (a) A body (green) is deformed locally using vlocal .
(b) Afterward, it is deformed more globally by vglobal which
is defined by mass-spring sets with larger influence. (c) Fi-
nally the penetration into the collision object (grey) is re-
versed using vcollision.

grids or volumetric meshes. It is based on an integration of
vector fields defined by a relatively small number of mass-
spring sets. This fact allows for a direct GPU implementation
of the shape deformation. While the simulation of the mass-
spring movements is still carried out on the CPU, the result-
ing spring positions are sent to the GPU which is responsi-
ble for deforming and rendering the mesh. Since the defor-
mation always starts from the original, undeformed mesh,
the original mesh can be stored as a static vertex buffer (to-
gether with buffers for normals, indices, weights etc.) on the
GPU, i.e. the vertex positions don’t have to be updated. Prac-
tically this means that the mesh is deformed by rendering it.
This is a contrast to the GPU implementation of [vFTS06],
which relies on a read-back of vertex positions from the
GPU, which is a performance bottleneck.

5.1. Composition

As mentioned in Section 3.3, we can compose vector fields
in two ways: either by addition or by concatenation. In or-
der to get the best results, we use a combination of both. We
construct three vector fields vlocal ,vglobal ,vcollision and con-
catenate them. vlocal is the summation of all vector fields de-
fined by mass-spring sets whose radius is smaller than some
user defined threshold. This means that vlocal gives a rather
local deformation. vglobal is a summation of all vector fields
defined by mass-spring sets whose radius is larger than the
threshold. That way, it deforms the shape more globally. Fi-
nally vcollision is constructed as described in Section 4 and
concatenated to the other fields. Figure 7 illustrates this.

5.2. Skinning and integration

As explained in Section 3.4, we combine the vector field in-
tegration with matrix palette skinning in order to constrain

c© The Eurographics Association 2007.



von Funck et al. / Elastic Secondary Deformations by Vector Field Integration

the deformation to specific segments and to be able to emu-
late elasticity for animated objects and characters. A vertex
x is deformed using the following formula:

x′ =
4

∑
k=1

wkdik (Mik x). (18)

Here, ik,wk are the index-weight pairs for this vertex, Mik is
the ikth matrix from the matrix palette, and dik (.) is the ikth
deformation from the vector field palette.

The algorithm can be optimized by skipping index-
weight pairs whose weight is zero. The numerical integration
needed for dik is carried out using a standard Euler integra-
tion of the composed vector fields from Section 5.1. It turns
out that even a small number of integration steps gives pleas-
ing results. In our implementation we used twelve steps.

5.3. Normal computation

In order to get a correct lighting of the deformed shape,
we need to compute the deformed normals as well. Since
we want to avoid read-backs from the GPU, we cannot
employ standard methods considering for instance the 1-
ring neighborhood of a vertex. Our solution works as fol-
lows: Instead of deforming only the vertex x, two additional
points x1,x2 in the tangent plane of x and close to x are
deformed using the same indices and weights as x. Then
the deformed normal can be computed as the normalized of
(x′2 −x′)× (x′1 −x′), where x′,x′1,x

′
2 are the deformed ver-

tices of x,x1,x2 respectively.

5.4. GPU implementation

The necessary parameters like spring positions, elonga-
tions and bone matrices are passed to the vertex shader
as uniform variables. As mentioned above, the vertices,
indices, weights, normals etc. are stored as static buffers
in video memory. In order to prevent vertices from be-
ing deformed multiple times, we exploit the vertex cache
by computing cache-optimized triangle strips of our mod-
els. For that purpose, we used the NvTriStrip library
(http://developer.nvidia.com/object/nvtristrip_library.html).

6. Applications

In this section we apply our technique to different kinds of
primary animations.

6.1. Keyframe animation

In interactive applications like games, character animation
is usually performed via skeletal animation. That means that
for every part of the body a rigid transformation is defined to
get different poses of the character. Being rigid, these trans-
formations cannot describe elastic secondary deformations

Figure 8: Skeletal animations become more lifelike by
adding secondary animations of muscles and fat.

resulting from jiggling muscles or fat. In order to demon-
strate our method, we have built a simple keyframe anima-
tion system based on a linear interpolation between different
character poses. Figure 8 and movie 6 show the animation of
a boxer with and without our secondary deformations. Here,
the animator has placed 13 masses with different influences
in the character. During the animation, the corresponding
mass-spring sets are simulated based on the movement of the
body parts. Then the shape is deformed and rendered by the
GPU (see Section 5). As the comparison in the video shows,
the secondary deformations introduced by vector field inte-
gration enhance the visual appearance and make the anima-
tion more lifelike.

6.2. Interactive moving and deformation

Even simple operations like moving or rotating objects as
well as applying standard deformation techniques can be vi-
sually enhanced by adding elastic secondary deformations
to the object. In Figure 9 and movie 7, the cow model is
deformed and moved interactively. In addition, the mass-
spring sets which are placed throughout the body are sim-
ulated based on the resulting motion. By choosing differ-
ent influence radii, masses and spring parameters, realistic
looking motions of fat and muscle can be emulated. Usually,
mass-spring sets with low influence and mass are placed at
small details (like the ears of the cow model) to get fast vi-
brations there, while large and plump regions (like the belly
of the cow model) are deformed by mass-spring sets with
large mass and influence.

6.3. Rigid body simulation

In order to get realistically moving and colliding elastic bod-
ies, we apply our secondary deformation to rigid body simu-
lation methods. That means that an object is represented by
one or more rigid bodies which are interconnected by joints.
These rigid bodies are simulated using a standard rigid body
dynamics system. For our implementation, we used the New-
ton Game Dynamics (http://www.newtondynamics.com) li-
brary. Using deformation skinning (Section 3.4), we get a
ragdoll simulation of the object. In order to make the object
appear more elastic, each rigid body is rotated towards its
rest pose during the simulation. This basically means that
the bodies are interconnected by elastic joints. Furthermore,

c© The Eurographics Association 2007.



von Funck et al. / Elastic Secondary Deformations by Vector Field Integration

Figure 9: During interactive movement and deformation of the cow model, different parts of the body jiggle elastically with
different frequencies.

Figure 10: A camel ragdoll falls through a tower with ob-
stacles.

Figure 11: While the model is pulled through the ring, its
volume is preserved and intersections with the ring geometry
are avoided.

we have to allow the object to penetrate the collision envi-
ronment, such that we can apply the collision handling algo-
rithm from Section 4. During penetration, we apply an im-
pulse to the object which is proportional to the penetration
depth. That way, we get an elastic collision.

Figure 10 and movie 8.1 show a scene of a camel model
falling through a scene composed of walls and bars. The
model is composed of 7 different rigid bodies for legs, body,
neck and head, and 5 mass-spring sets are distributed in
the model. In the scene shown in Figure 11 and movie 8.2,
a head model simulated by one rigid body and five mass-
spring sets is dragged through a ring. Here we can see how
the volume of the shape is preserved and intersections with
the collision geometry are avoided. Figure 12 shows how the
shape is deformed by multiple draggers. Each dragger con-
tributes a new vector field to the integration.

Figure 12: Using vector field integration, multiple draggers
can be used to deform the model. Even after extreme defor-
mations, the model returns to its original shape.

Figure 13: In order to evaluate the visual plausibility of our
approach, we compared a real jelly (left) with a virtual jelly
whose secondary motion is emulated by our system (right).

7. Evaluation and Comparison

In order to get a formal evaluation of the approach, physi-
cally exact ground truth deformations of real models are nec-
essary. Since our approach is heuristic in nature, we prefer to
use the visual plausibility as one parameter of our evaluation.
The examples in the figures and the movie show that the sec-
ondary deformations look rather realistic even though only a
low number of steering parameters are used. In order to get
a comparison between a real elastic incompressible material
and our method, we recorded a video of a jelly. In Figure 13
and movie 9.1 we see a real jelly which is shaked in order
to obtain inertial motion. As a result, the small knobs on the
jelly jiggle with different frequencies. We modeled this jelly
using our approach, which is shown in Figure 13 and movie
9.2. Here we placed mass-spring sets with different masses
and influence radii in the knobs, which took us less than one
minute. When the virtual jelly is shaked in our system, the
resulting deformation looks quite similar to the real one.

c© The Eurographics Association 2007.



von Funck et al. / Elastic Secondary Deformations by Vector Field Integration

Figure 14: Also high-resolution models consisting of sev-
eral hundred thousands of triangles can be deformed in real-
time.

Another point of evaluation is the choice and parametriza-
tion of the mass-spring sets. Without doing a formal user
study, we presented the system to different people (mainly
students). It turned out that even when using the system for
the first time, it took them only a few minutes of "playing
around" with the mass-spring sets to get realistic secondary
deformations similar to the ones shown in the figures.

Furthermore, a number of "hard" evaluations are possi-
ble concerning the following properties: due to its nature,
our deformations are volume preserving, C2 continuous for
mass-spring simulations (but only C1 if collision treatment
is involved), and without any self-intersections. We believe
that these conditions are strong enough to produce visu-
ally plausible deformations even though no explicit physi-
cal model is involved. Thanks to the avoidance of complex
physical simulations, the method is stable. Figure 12 shows
a shape that undergoes an extreme deformation during colli-
sion and still returns to its rest state afterward.

Due to the fast vector field integration and the GPU
implementation, the algorithm allows to emulate high
resolution models at interactive rates. For instance, the
model shown in figure 14 and movie 8.4, consisting
of 345,944 triangles, 7 segments and 10 mass-spring
sets, can be deformed and simulated at 10-14 frames
per second. The following table shows detailed bench-
mark results for different scenes, measured on an 2.6
GHz CPU with a GeForce 7800 GTX graphics card.

Fig. Movie #t #s #m fps
9 7 5,804 9 8 374 – 376
8 6 15,596 8 13 133 – 135

10 8.1 19,536 7 5 101 – 125
11 8.2 16,532 1 4 55 – 135
9 8.3 5,804 9 8 302 – 355

14 8.4 345,944 7 10 10 – 14
Here, #t is the number of triangles, #s the number of
skinning segments, #m the number of mass-spring sets and
fps the number of frames per second (worst and best).

Comparison to existing approaches.
In order to evaluate our contributions, we point out the most
important differences to previous approaches of deformable
object modeling.

In contrast to mass-spring systems, our mass-spring sets
are not interconnected. This makes the simulation straight-

forward to implement, intuitive, fast and stable. Further-
more, since the actual deformation is performed by an in-
tegration of divergence-free vector fields, the volume of the
shape is preserved and a low number of mass-spring sets suf-
fices to give plausible deformations.

While Finite Difference Methods, Finite Element Meth-
ods and Finite Volume Methods require control structures
like grids or volumetric meshes, our approach is mesh-free.
This allows for a fast and intuitive placement of mass-spring
sets and requires no preprocessing.

Existing mesh-free methods like point based animation
usually require a larger amount of particles in the shape than
our approach needs mass-spring sets. This is because of the
fact that the underlying physical simulation requires a cer-
tain particle density in order to be accurate. In contrast to
this, our method gives plausible results even for a small num-
ber of mass-spring sets, which is due to its inherent volume-
preserving nature.

The geometrically motivated approach by [MHTG05] re-
sembles our approach in the sense that it is mesh-free, re-
quires a small number of particles and exchanges physical
accuracy for interactivity and stability. However, this ap-
proach does not preserve the volume of the shape, which is
especially noticeable for large deformations. While this ap-
proach needs to embed the shape into regularly placed cubi-
cal regions to get more detailed deformations, our method re-
quires mass-spring sets with appropriate influence radii and
positions.

Limitations.
Like most related approaches, the presented work has some
limitations. We did not consider collisions between multi-
ple elastic bodies. Here, a convex decomposition of the col-
liding shapes and a similar algorithm as presented in Sec-
tion 4 might work out. Furthermore, the vector fields de-
scribed by the mass-spring sets perform only translations in
their inner regions. That way, bending or twisting deforma-
tions are not directly possible. Here, rotational fields as pre-
sented in [vFTS06] might be a solution. Also a resampling
of the deformed mesh as used in [vFTS06] is not applica-
ble to our approach, because it is GPU based without read-
backs. Although highly controllable compared to related ap-
proaches, steering the deformation exactly is difficult due to
the simple, implicitly defined influence of the mass-spring
sets and their corresponding vector fields. Using deforma-
tion skinning, prevention of global self-intersections and ex-
act preservation of volume are not guaranteed, as depicted
in Figure 4. However, we believe that deformation skinning
adds to the visual plausiblity and furthermore integrates well
with existing skeleton-based animation frameworks.

8. Conclusions

In this paper, we made the following contributions:

• We introduced the construction and integration of

c© The Eurographics Association 2007.



von Funck et al. / Elastic Secondary Deformations by Vector Field Integration

divergence-free vector fields to get elastic secondary de-
formations.

• In comparison to [vFTS06], we enhanced the used vector
fields both in polynomial degree and continuity.

• Contrary to [vFTS06], the GPU implementation does not
perform any read-back operations during the integration.
This allows real-time deformations even for fairly large
shapes.

• We have shown that vector field integration can also be
used to avoid unwanted intersections and penetrations of
soft objects in rigid body deformations. It turns out that
the combination of rigid body simulation as primary an-
imation and our secondary deformation based on vector
field integration gives a realistic emulation of elastically
deforming models. Furthermore, it can be built on top of
an existing rigid body system, which makes the imple-
mentation more unified and robust.

Our deformations are stable, smooth, and, without de-
formation skinning, volume preserving and free of self-
intersections. They allow to apply LOD approaches. Further-
more, they can be used on top of arbitrary primary anima-
tions.

9. Acknowledgments

This research has partially been funded by the Max Planck
Center for Visual Computing and Communication (MPC-
VCC).

References
[CBC∗05] CAPELL S., BURKHART M., CURLESS B., DUCHAMP T., POPOVIZ̧.:

Physically based rigging for deformable characters. In SCA ’05: Proceedings of the
2005 ACM SIGGRAPH/Eurographics symposium on Computer animation (New York,
NY, USA, 2005), ACM Press, pp. 301–310. 2

[CGC∗02] CAPELL S., GREEN S., CURLESS B., DUCHAMP T., POPOVIĆ Z.: Inter-
active skeleton-driven dynamic deformations. In SIGGRAPH ’02: Proceedings of the
29th annual conference on Computer graphics and interactive techniques (New York,
NY, USA, 2002), ACM Press, pp. 586–593. 2

[CHP89] CHADWICK J. E., HAUMANN D. R., PARENT R. E.: Layered construction
for deformable animated characters. In SIGGRAPH ’89: Proceedings of the 16th an-
nual conference on Computer graphics and interactive techniques (New York, NY,
USA, 1989), ACM Press, pp. 243–252. 2

[CK05] CHOI M. G., KO H.-S.: Modal warping: Real-time simulation of large rota-
tional deformation and manipulation. IEEE Transactions on Visualization and Com-
puter Graphics 11, 1 (2005), 91–101. 2

[DC96] DESBRUN M., CANI M.-P.: Smoothed particles: A new paradigm for animat-
ing highly deformable bodies. In Eurographics Workshop on Computer Animation
and Simulation (EGCAS) (Aug 1996), Boulic R., Hegron G., (Eds.), Springer-Verlag,
pp. 61–76. Published under the name Marie-Paule Gascuel. 2

[DDCB01] DEBUNNE G., DESBRUN M., CANI M.-P., BARR A. H.: Dynamic real-
time deformations using space & time adaptive sampling. In SIGGRAPH ’01: Proceed-
ings of the 28th annual conference on Computer graphics and interactive techniques
(New York, NY, USA, 2001), ACM Press, pp. 31–36. 2

[DSB99] DESBRUN M., SCHRÖDER P., BARR A.: Interactive animation of structured
deformable objects. In Proceedings of the 1999 conference on Graphics interface ’99
(San Francisco, CA, USA, 1999), Morgan Kaufmann Publishers Inc., pp. 1–8. 2

[GEW05] GEORGII J., ECHTLER F., WESTERMANN R.: Interactive simulation of de-
formable bodies on gpus. In Simulation and Visualisation 2005 (2005). 2

[GKS02] GRINSPUN E., KRYSL P., SCHRÖDER P.: Charms: a simple framework for
adaptive simulation. In SIGGRAPH ’02: Proceedings of the 29th annual conference
on Computer graphics and interactive techniques (New York, NY, USA, 2002), ACM
Press, pp. 281–290. 2

[JP99] JAMES D. L., PAI D. K.: Artdefo: accurate real time deformable objects. In
SIGGRAPH ’99: Proceedings of the 26th annual conference on Computer graphics
and interactive techniques (New York, NY, USA, 1999), ACM Press/Addison-Wesley
Publishing Co., pp. 65–72. 2

[JP02] JAMES D. L., PAI D. K.: Dyrt: dynamic response textures for real time deforma-
tion simulation with graphics hardware. In SIGGRAPH ’02: Proceedings of the 29th
annual conference on Computer graphics and interactive techniques (New York, NY,
USA, 2002), ACM Press, pp. 582–585. 2

[LA04] LIEN J.-M., AMATO N. M.: Approximate convex decomposition. In SCG
’04: Proceedings of the twentieth annual symposium on Computational geometry (New
York, NY, USA, 2004), ACM Press, pp. 457–458. 5

[LKM01] LINDHOLM E., KLIGARD M. J., MORETON H.: A user-programmable ver-
tex engine. In SIGGRAPH ’01: Proceedings of the 28th annual conference on Com-
puter graphics and interactive techniques (New York, NY, USA, 2001), ACM Press,
pp. 149–158. 4

[MDM∗02] MÜLLER M., DORSEY J., MCMILLAN L., JAGNOW R., CUTLER B.:
Stable real-time deformations. In SCA ’02: Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on Computer animation (New York, NY, USA,
2002), ACM Press, pp. 49–54. 2

[MG04] MÜLLER M., GROSS M.: Interactive virtual materials. In GI ’04: Proceedings
of the 2004 conference on Graphics interface (School of Computer Science, University
of Waterloo, Waterloo, Ontario, Canada, 2004), Canadian Human-Computer Commu-
nications Society, pp. 239–246. 2

[MHTG05] MÜLLER M., HEIDELBERGER B., TESCHNER M., GROSS M.: Meshless
deformations based on shape matching. In SIGGRAPH ’05: ACM SIGGRAPH 2005
Papers (New York, NY, USA, 2005), ACM Press, pp. 471–478. 2, 9

[MKN∗04] MÜLLER M., KEISER R., NEALEN A., PAULY M., GROSS M., ALEXA
M.: Point based animation of elastic, plastic and melting objects. In SCA ’04: Proceed-
ings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation
(New York, NY, USA, 2004), ACM Press, pp. 141–151. 2

[NMK∗06] NEALEN A., MÜLLER M., KEISER R., BOXERMAN E., CARLSON M.:
Physically based deformable models in computer graphics. Computer Graphics Forum
25, 4 (December 2006), 809–836. 3

[NT98] NEDEL L. P., THALMANN D.: Real time muscle deformations using mass-
spring systems. In CGI ’98: Proceedings of the Computer Graphics International
1998 (Washington, DC, USA, 1998), IEEE Computer Society, p. 156. 2

[OBH02] O’BRIEN J. F., BARGTEIL A. W., HODGINS J. K.: Graphical modeling
and animation of ductile fracture. In SIGGRAPH ’02: Proceedings of the 29th annual
conference on Computer graphics and interactive techniques (New York, NY, USA,
2002), ACM Press, pp. 291–294. 2

[OZH00] O’BRIEN J., ZORDAN V., HODGINS J.: Combining active and passive mo-
tions for secondary motion. IEEE Computer Graphics and Applications 1, 1 (2000),
86–96. 1

[PB81] PLATT S. M., BADLER N. I.: Animating facial expressions. In SIGGRAPH
’81: Proceedings of the 8th annual conference on Computer graphics and interactive
techniques (New York, NY, USA, 1981), ACM Press, pp. 245–252. 2

[PH06] PARK S., HODGINS J.: Capturing and animating skin deformation in human
motion. ACM Transactions on Graphics (SIGGRAPH 2006) 25, 3 (Aug. 2006). 1

[TBHF03] TERAN J., BLEMKER S., HING V. N. T., FEDKIW R.: Finite volume meth-
ods for the simulation of skeletal muscle. In SCA ’03: Proceedings of the 2003 ACM
SIGGRAPH/Eurographics symposium on Computer animation (Aire-la-Ville, Switzer-
land, Switzerland, 2003), Eurographics Association, pp. 68–74. 2

[Ton98] TONNESEN D. L.: Dynamically coupled particle systems for geometric model-
ing, reconstruction, and animation. PhD thesis, 1998. Adviser-Demetri Terzopoulos.
2

[TPBF87] TERZOPOULOS D., PLATT J., BARR A., FLEISCHER K.: Elastically de-
formable models. In SIGGRAPH ’87: Proceedings of the 14th annual conference on
Computer graphics and interactive techniques (New York, NY, USA, 1987), ACM
Press, pp. 205–214. 2

[TW90] TERZOPOULOS D., WATERS K.: Physically-based facial modeling, analysis
and animation. Journal of Visualization and Computer Animation 1, 1 (1990), 73–80.
2

[TW91] TERZOPOULOS D., WATERS K.: Modeling animated faces using scanned data.
Journal of Visualization and Computer Animation 2, 2 (1991), 123–128. 2

[vFTS06] VON FUNCK W., THEISEL H., SEIDEL H.-P.: Vector field based shape de-
formations. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers (New York, NY, USA,
2006), ACM Press, pp. 1118–1125. 2, 3, 4, 5, 6, 9, 10

[ZG05] ZHENG GUO K. C. W.: Skinning with deformable chunks. Computer Graphics
Forum 24, 3 (2005), 373–382. 2

[ZSH96] ZÖCKLER M., STALLING D., HEGE H.: Interactive visualization of 3D-
vector fields using illuminated stream lines. In Proc. IEEE Visualization ’96 (1996),
pp. 107–113. 3

c© The Eurographics Association 2007.


