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Abstract

In this paper we propose a new topology based met-
ric for 2D vector fields. This metric is based on
the concept of feature flow fields. We show that it
incorporates both the characteristics and the local
distribution of the critical points while keeping the
computing time reasonably small even for topolog-
ically complex vector fields. Finally, we apply the
metric to track the topological behavior in a time-
dependent vector field, and to evaluate a smoothing
procedure on a noisy steady vector field.

1 Introduction

Vector fields describing the flow of certain materials
belong to the most common data sets which are con-
sidered in scientific visualization. To deal with the
increasing size and complexity of the vector fields
to be visualized, a number of reconstruction, com-
pression and simplification techniques have been in-
troduced. All these techniques rely on certain dis-
tance measures between vector fields: the original
and the derived vector field have to be compared
to guarantee a sufficient similarity between them.
Hence the definition of useful metrics on vector
fields plays a crucial role in the applications above.

The first approaches on metrics (distance mea-
sures) of vector fields consider local deviations of
direction and magnitude of the flow vectors in a cer-
tain number of sample points ([5], [12]). These dis-
tance functions give a fast comparison of the vector
field but do not take any structural information of
the vector fields into consideration.

One of the most important features of vector
fields are their topological skeletons. After their in-
troduction as a visualization tool in [6], a number
of extensions have been proposed ([11, 19, 3, 21])
Topological methods are used to simplify [3, 4, 17,
18], smooth [20], compress [8, 14] and design [13]
vector fields.

Due to the importance of vector field topology, it
is an obvious approach to define vector field metrics
which are based on a comparison of the topological
skeleton. The topological skeleton of a vector field
essentially consists of critical points and separatri-
ces. Given a 2D vector field

u(z,y)
vi(x, = 5
(.9) ( o(z.y) )
a first order critical point in v is an isolated

point (CCo,yo) with V(-T(],yo) — (070)T and
det(Jv(z0,90)) # 0, where

Ve (T, Y

denotes the Jacobian matrix field. Separatrices are
stream lines which separate the flow into regions of
different flow behavior.

A first approach to define a topology based dis-
tance function for vector fields was given in [7].
The algorithm described there follows the follow-
ing scheme:

Algorithm 1 (find the distance dist of the vector
fields vi and v2 over the same domain)

1. Extract all critical points of v; and v, and
give them a qualitative characterization.

2. Couple the critical pointsin vi and vs: for
each critical point in vy, a partner critical
point in vo is searched and vice versa. If the
number of critical points in v; and vy does
not coincide, additional critical points are in-
troduced.

3. Computethedistance of vi and v» asthe sum-
mation of the distances of the corresponding
critical points.

Note that algorithm 1 reduces the problem of com-
paring vector fields to the problem of comparing
critical points. To carry out this algorithm, two
problems have to be solved:
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e A distance function between two critical

points has to be introduced.

e A coupling strategy of the critical points of v,

and v has to be found.
For both problems, a number of solutions have been
proposed. It is the main contribution of this paper
to introduce a new coupling strategy for the critical
points of two vector fields. This strategy is based on
the concept of feature flow fields ([15]).

The rest of the paper is organized as follows:
section 2 reviews previous work on topology based
vector field metrics. Section 3 introduces the con-
cept of feature flow fields. Based on this, section
4 describes how to apply them to couple critical
points. Section 5 shows some results, while con-
clusions are drawn in section 6.

2 PreviousWork

Following the outline of algorithm 1, we review
both methods to compare critical points and to cou-
ple them.

2.1 Distancefunctionsfor critical points

To compare two first order critical points, a distance
function on their Jacobian matrices has to be intro-
duced. In [7], a critical point is mapped onto the rim
of a unit circle in an («, 3) phase plane by

p=div(v) =uzs +vy , ¢q=det(Jv)
a=p , B=sign(p’ —4q)- /[I(p* — ]|
a=—L— | f=— L.
Va2+32 Va2+p2

To compare two critical points, their Euclidian dis-
tance in the (a, 3) phase plane are considered. This
(a, B) location reflects important structural similar-
ities of critical points. For instance, the distance of
two saddle points in the («, 3) phase plane is less
or equal v/2, while two centers always have identi-
cal (o, B) values. However, some structural proper-
ties could not be covered by the («, 3) phase plane,
such as the collapsing of critical points with differ-
ent flow behavior or an inconsistent treatment of in-
verted vector fields (see [16]).

In [16], a (v, r) phase plane was introduced
which maps a critical point into the inner of a unit
circle: a critical point gets the polar coordinates
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(v,7)as
Uz + Vy

cosy =

\/(ul +vy)? + (Ve — uy)?
siny = Yo — Uy

\/(uw +vy)? + (Ve — uy)?

I 1 Uz Vy — Uz Uy
2 ui4vi4ul+og

where u,, vz, uy, vy denote the components of the
Jacobian matrix J at the critical point. See [16]
for a discussion of the properties of the (-, r) phase
plane. Similar to the («, 3) phase plane, the dis-
tance of two critical points is denoted by the Eu-
clidian distance in the (-, r) plane.

2.2 Coupling strategiesfor critical points

Obviously, the coupling strategy for critical points
greatly influences the vector field metric. In [7], all
possible couplings of the critical points of two vec-
tor fields vi and v» are considered, and the cou-
pling with a minimal summation of the distances
of the critical point couples (using the distance in
(a, B) space) is searched. To find this optimal cou-
pling, a technique from image retrieval called Earth
Mover’s Distance (EMD, see [10]) was applied.
However, this techniques has a limited applicabil-
ity due to the following disadvantages:

e The EMD strategy of [7] considers only the
characteristics of of critical points, not their
location in the vector field. Thus, the distri-
bution of the critical points does not influence
the metric.

Since in worst case all possible couplings of
critical points have to be checked, the worst
case complexity of the algorithm is O(n!).
However, [9] states that in reality the complex-
ity of the algorithm is O(n®) where n is the
number of critical points.

The first problem has partially been resolved in [2]
by considering not only the critical points but also
their connectivity by separatrices. Since in general
there seem to be certain correlations between the
connectivity and the location of the critical points,
location information is partially considered in [2].
However, the second problem remains unsolved,
especially when vector fields of a complex topol-
ogy (i.e., with a high number of critical points) are
treated. In these cases, even a cubic complexity may



drop the computing time to unacceptable rates. In
fact, all the examples in [7] (and the follow-up pa-
pers [2] and [1]) consider only vector fields with a
very small number of critical points.

To overcome the problems mentioned above, we
propose a new coupling strategy which is based the
recently introduced concept of feature flow fields.
In the next section we give a brief introduction to
feature flow fields.

3 Feature Flow Fields

Feature flow fields ([15]) originally have been intro-
duced to track features — in particular critical points
— in time-dependent vector fields. Given a 2D time-
dependent vector field

wiz,y.1) = ( un) ) ®
a 3D vector field
[z, y,1)
f(z,y,t) = | g(=z,y,t) @)
h(z,y,t)

is constructed in such a way that the paths of the
critical points over time correspond to stream lines
of f. The vector field f is called feature flow field
because its stream lines describe the flow of the fea-
tures in v. This way the process of tracking a fea-
ture is carried out by a numerical stream line inte-
gration of f which is a well-understood procedure
in the visualization community. Figure 1 gives an
illustration of the concept of feature flow fields.
The particular definition of f depends on the
choice of the feature to be tracked. For our applica-
tion, we want to track the location of critical points
over time. To do so, f can be written as (see [15])

(531) -

where w,, w,, w; denote the partial derivatives of
w(z,y,t).

det(wy, wy)
det(we, W)
det(wg, wy)

f(z,y,1)

4 Applying Feature Flow Fields for
Coupling Critical Point

Given are two vector fields v, and vy over the same
domain. To couple the critical points of v; and v,
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Figure 1: Feature tracking using feature flow fields.
The dynamic behavior of a feature of v at a certain
time ¢; is tracked by tracing the stream lines of f
from the feature. The features at a certain time ;.1
can be observed by intersecting these stream lines
with the time plane ¢t = ¢,41.

we construct a time-dependent vector field w by ap-
plying a linear interpolation of v, and v:
W({B,y,t) = (17t) Vl(l‘,y)+tV2($,y). 4)
Then the feature flow field f is computed by apply-
ing (3) to (4). For every critical point (xo,yo) of
v1, the stream line of f starting from (zo, yo,0) is
integrated until one of the following events occur
for the current point (z,, yn, t») Of the numerical
integration:

1. t, < 0: the end point (zn,yn) is a critical
point in v¢
t, > 1: the end point (zn,y») is a critical
point in v

3. (zn, yn) lies outside the domain of v; and v
Figure 2 gives an illustration of the three possible
cases.

In case 1 and 3, no partner point of (xo,yo) is
detected. If case 2 occurs, it can be shown (see [15])
that (z,, y») is a critical point in va. In this case,
(z0,yo) in vy and (zn, yn) in v are considered to
be a couple. A similar approach can be applied to
find a partner critical point for (zo, yo, 1) in va.

Now we can describe the modification of algo-
rithm 1 by using feature flow fields as

2.

Algorithm 2 (find the topological distance dist of
the vector fields v, and v2 over the same domain)
1. Extract all critical pointsof v; and vs.
2. Construct w and f according to (3) and (4).
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Figure 2. Computing the streamlines of f starting
from a critical point (zo, yo, 0) in v1; a) integration
ends in a critical point (z,,yn,0) in vi; a) inte-
gration ends in a critical point (x,, yn, 1) in va; C)
integration leaves the domain of v; and v.

3. for every critical point (xo,y0) of vi: in-
tegrate the stream line of f starting in
(0, y0,0). If the integration ends in a point
(zn,yn, 1), thecritical point (z,,y.) inva is
the partner of (zo,yo) in vi. Otherwise, no
partner critical point of (xo, o) is detected.

4. Detect partner points for all critical points of
v which do not have a partner yet, by apply-
ing an approach similar to 3.

5. Compute the distance dist of v; and v, asthe
summation of the Euclidian distances of the
corresponding critical pointsin (v,r) phase
plane. If a critical point does not have a part-
ner, its contribution to the summation is set to
2 (themaximal distancein (v, r) phase plane).

Before applying algorithm 2, we have to ensure that
it really defines a metric on all vector fields over the
same domain:

Theorem 1 The distance function dist defined by
algorithm 2 isa metric on the set of all vector fields
over the same domain.

Proof:

1. dist(v1,v1) = 0: inserting vi = vz into (3)
and (4) gives f(x,y,t) = (0,0, h(z,y,1))".
Thus, every critical point of vy is mapped to
itself contributing a zero distance to the dist
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function. Figure 3 gives an illustration using a
data set which is explained later in section 5.

2. dist(vy,ve) = dist(ve,v1) follows directly
from the symmetry of the linear interpolation
in (4).

3. diSt(Vl,V3) < diSt(Vl,Vg) + diSt(V2,V3):
Let (zo,yo) be a critical point in vi. |If
(0, o) as partner critical point (zn,y.) in
v2, We compute the partner of (z,,y») in vs
by dist(vz, v3). If this partner in v3 exists, we
call it (z,, ym ). If one of the points (zn, y)
or (zm,ym) does not exist, the inequality is
fulfilled because one of the summands on the
right-hand side has the maximal value of 2. If
both (zn,yn) OF (Zm,ym) exist, the inequal-
ity is fulfilled because the Euclidian distance
of (wo,yo), (xnay’ﬂ)’ (xm,ym) in the (7’7“)
plane is a metric.

Figure 3: Comparing the vector field with itself:
maps every critical point to itself.

5 Results

We show the application of our distant measure
for two problems: the comparison of different time
steps in a time varying data set, and the evaluation
of a smoothing procedure in a noisy flow data set.
Give a time-dependent vector field, one of the
most crucial tasks is to explore the temporal behav-
ior of its important feature. Figure 4 shows the vi-
sualization of a 2D flow in a bay area of the Baltic
Sea near Greifswald, Germany (Greifswalder Bod-
den) at three different time steps. This data set
was obtained by a numerical simulation on a reg-
ular 115 x 103 grid at 25 time steps. It was created
by the Department of Mathematics, University of
Rostock (Germany). The data set can be consid-

ered as a collection of 25 vector fields vo, ..., vaa.



Figure 4 shows the topological skeleton of the first
and the last vector field vo and va4 as well as the
vector field v11 approximately in the middle of the
time sequence. To evaluate the temporal behavior of

)j
b1

Figure 4: Topological skeleton of the bay data set at
the time steps 0, 11 and 24.

the topology, we computed the topological distance
of each time step with all other time steps, i.e. we
compute dist(v;,vy) forall 7,5 € {0,...,24}. As
an example, figure 5 illustrates the computation of
the distance of the vector fields vs and v1o. Shown
are the topological skeletons of vs and v as well
as the integration of the stream lines of the feature
flow field starting in the critical point. We can see
that most of the points find their partners in the other
vector field. Figure 6 shows a magnification of fig-
ure 5).

Figure 7 shows the color coded distance matrix
of all vector fields vy, ..., va4. The distance varied
between 0 and a maximal value of 104.5 (which
was detected between vs and va4). We linearly
color coded the distance in such a way that a zero
distance corresponds to black while the maximal
distance corresponds to white. Figure 7 shows that
the distance matrix is symmetric and with a zero
main diagonal. This corresponds to the observation
that our distant measure is a metric. The most im-
portant observation which can be made from figure
7 is that the distance of two vector fields v; and
v; is approximately proportional to the distance
|l — 7| of the time indices. This means that the rate
of change of the topology is approximately linear
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Figure 5: Coupling the critical points of the vs and
vio Of the bay data set by integrating the stream
lines of f.

over time. This result is particularly interesting if
we consider the number of critical points in the
vector fields vo, ..., vas. They are (in this order)
65, 71,71, 68, 65, 71, 63, 62, 66, 64, 65, 63, 70, 70,
51, 61, 52, 50, 56, 52, 63, 62, 72, 65. This shows
that there is no correlation between the number of
critical points and the topological distance: both vo
and vq4 have the same number 65 of critical points
but a maximal topological distance.

Figure 8 shows the topological skeleton of a
vector field vy describing the skin friction on a face
of a cylinder which was obtained by a numerical
simulation of a flow around a square cylinder. The
data set was generated by R.W.C.P. Verstappen and
A.E.P. Veldman of the University of Groningen (the
Netherlands). The data was given on a rectangular
102 x 64 grid with varying grid size and consists of
338 critical points, 34 boundary switch points, and
714 separatrices. Therefore, it can be considered
as a vector field of a complex topology. From this
vector field vy we created a number of new vector
fields v; (¢« = 0,...,30) by applying 7 iterations
of a Laplacian smoothing of vo. We compute the
topological distance of all v; in order to get an
assessment of the smoothing.

Figure 9 shows the stream lines of the feature
flow field between v and v1o. As we can see there,
most of the critical points of v, do not have partner
in vio. Figure 10 shows a magnification of figure 9.
Figure 11 illustrates the coupling process between
the critical points of v and vsg



Figure 6: Coupling the critical points of the v5 and
vio (magnification of figure 5).

Figure 12 shows the distance matrix of all vector
fields vo, ...v3o of the skin friction data set. The
distance varied between 0 and 336.15 (between v
and va2). As we can see in the picture, there is
a significant distance between v, and all the other
vector fields. The remaining distances between v;
and v; (i,j # 0) are approximately proportional to
lle —3lI.

The interpretation of the distance matrix in fig-
ure 12 is that the original data set consists of a lot
of noise which was almost entirely smoothed out
by applying a Laplacian smoothing once. Further
smoothing had only a little influence on the topol-
ogy of the data set.

The time to compute dist(v;, v;) strongly de-
pends on the number of critical points of v; and
v;. It was less than 10 seconds for any pair i,j €
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l,

Figure 7: Distance matrix between vy,...,va4 for the
bay data set.

{0, ..., 30} on an Intel Xeon 1.7 GHz processor.

6 Conclusions

We have introduced a new distance measure for 2D
vector fields which is based on the concept of fea-
ture flow fields. This distance measure has been
shown to be fast and reliable even for topologically
complex data sets. It yields a natural approach of
coupling critical points of two vector fields in such
a way that both the characteristics and the location
of the critical points are considered. We applied
the measure to two real-life data sets to evaluate the
temporal evolving of a time-dependent flow data set
and the smoothing of a noisy steady flow data set.

For future research, we intend to apply a similar
distance measure to 3D vector fields.



Figure 9: Coupling the critical points of the v and
v1o (skin friction data set).

Figure 10: Magnification of figure 9.
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