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Abstract
One of the reasons that topological methods have a limited popularity for the visualization of complex 3D flow
fields is the fact that their topological structures contain a number of separating stream surfaces. Since these
stream surfaces tend to hide each other as well as other topological features, for complex 3D topologies the
visualizations become cluttered and hardly interpretable. One solution of this problem is the recently introduced
concept of saddle connectors which treats separation surfaces emanating from critical points. In this paper we
extend this concept to separation surfaces starting from boundary switch curves. This way we obtain a number
of particular stream lines called boundary switch connectors. They connect either two boundary switch curves
or a boundary switch curve with a saddle. We discuss properties and computational issues of boundary switch
connectors and apply them to topologically complex flow data.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Genera-
tion I.3.3 [Computer Graphics]: Picture/Image Generation I.3.7 [Computer Graphics]: Three-Dimensional Graph-
ics and Realism

1. Introduction

Topological methods are standard tools for the visualization
of 2D vector fields. The main idea behind them is to seg-
ment the flow into areas of similar flow behavior. To do so,
critical points and separatrices of the flow are extracted. Vi-
sualizing the topological skeleton is attractive since even a
complex flow behavior can be represented by a limited num-
ber of graphical primitives.

After the introduction of topological methods to the vi-
sualization community in [HH89], an intensive research
has been done in this field. [SKMR98] treat higher or-
der critical points, i.e. critical points with a possibly van-
ishing Jacobian. In [dLvL99a], separatrices starting from
boundary switch points are discussed. [WS01] gives a
method to detect closed separatrices. Topological methods
are used to simplify [dLvL99a, dLvL99b, TSH00, TSH01a],
smooth [WJE01], compress [LRR00] and design [The02]
vector fields. In [LBH98, BKH99, TW02], topology-based
2D vector field metrics are defined. The topological be-
havior of time-dependent vector fields is analyzed in
[TSH01b, TWSH02, TS03].

Although the topology of 3D vector fields is well-
understood in the visualization community, there are only
a few applications which are based upon the topology of 3D
vector fields. Similar to 2D vector fields, [HH91] proposed
methods for detecting and classifying first order critical
points by an eigenvalue/eigenvector analysis of the Jacobian
matrix. A system for visualizing the topological skeleton of
3D vector fields has been presented in [GLL91]. Topological
skeletons of particular analytic 3D vector fields are extracted
in [LDG98, HG00]. Mahrous et. al ([MBS∗02, MBHJ03])
obtain a topological segmentation of a vector field by sam-
pling stream lines over the field and clustering areas where
a similar inflow/outflow behavior of the stream lines is ob-
served.

All 3D topology methods mentioned above either ignore
separatrices, i.e. focus only on a part of the topology, or they
were applied only to vector fields with a rather simple topol-
ogy, i.e. with a small number of critical points, boundary
switch curves and separatrices. One reason for this seems to
be that separatrices of 3D vector fields consist also of stream
surfaces – a fact which creates a number of problems. In
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Figure 1: Topological representations of the Benzene data
set. (top) The topological skeleton looks visually cluttered
due to the shown separation surfaces. (bottom) Visualization
of the topological skeleton using connectors.

particular, we see the following reasons why topological vi-
sualization of 3D vector fields is still less common than of
2D vector fields:

• The integration of stream surfaces is computationally
more involved and less stable than the integration of
stream lines, since convergence and divergence effects on
the stream surface may occur.

• The visualization of the topological skeleton of a vector
field requires the simultaneous visualization of a higher
number of stream surfaces. These stream surfaces tend to
hide each other and other topological features, leading to
visually cluttered representations (Figure 1(top)).

A number of solutions have been proposed for the first prob-
lem, see [Hul92, Gel01, SBM∗01, vW93].

A solution for the second problem was recently proposed
in [TWHS03]. Here the separation surfaces starting from
saddle points were considered. Instead of visualizing these
stream surfaces, their intersection curves were extracted and
visualized. [TWHS03] has shown that these intersection
curves are particular stream lines which were called saddle
connectors. The visualization of saddle connectors instead of
the separation surfaces gave – for the first time – expressive
visualizations even for topologically complex data sets.

Unfortunately, the solution in [TWHS03] was restricted
to separation surfaces created by saddle points. If the bound-
ary of the vector field is topologically considered as well,
another class of separation surfaces becomes relevant: sepa-
ration surfaces starting from boundary switch curves. These
separation surfaces create similar problems as the ones start-
ing from saddles: if a larger number of them is present, they
tend to produce visually cluttered images (Figure 1(top)).

It is the purpose of this paper to extend the concept of sad-
dle connectors to separation surfaces starting from bound-
ary switch curves. We show that the intersections of these
surfaces yield particular stream lines which will be called
boundary switch connectors. We discuss their extraction and
visualization and show that they give expressive topologi-
cal visualizations even for data sets with a high number of
boundary switch curves. Figure 1(bottom) illustrates an ex-
ample.

The rest of the paper is organized as follows: section 2
reviews the theoretical background of 3D vector field topol-
ogy including the concept of saddle connectors. In particular,
section 2 introduces an enhanced iconic representation of the
critical points in comparison to [TWHS03]. Section 3 dis-
cusses boundary switch curves and their classification into
inbound and outbound segments. Section 4 introduces the
concept of boundary switch connectors and discusses their
extraction and visual representation. Section 5 demonstrates
the application of boundary switch connectors to topologi-
cally complex 3D data sets, while conclusions are drawn in
section 6.

2. Theoretical Background

Topological structures of 3D vector fields are well-
understood in the visualization community for many years
[HH91, Asi93, CPC90, PS97]. In this section, we collect the
most important concepts and properties.

2.1. Critical Points

Consider a 3D vector field

v(x,y,z) =




u(x,y,z)
v(x,y,z)
w(x,y,z)


 . (1)
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A first order critical point x0 (i.e., v(x0) = 0) can be classi-
fied by an eigenvalue/eigenvector analysis of the Jacobian
matrix Jv(x) = ∇v(x), iff det(Jv(x0)) �= 0. Let λ1,λ2,λ3
be the eigenvalues of Jv(x0) ordered according to their
real parts, i.e. Re(λ1) ≤ Re(λ2) ≤ Re(λ3). Furthermore, let
e1,e2,e3 be the corresponding eigenvectors, and let f1, f2, f3
be the corresponding eigenvectors of the transposed Jaco-
bian (Jv(x0))T . (Note that J and JT have the same eigenval-
ues but not necessarily the same eigenvectors.) The sign of
the real part of an eigenvalue λi denotes – together with the
corresponding eigenvector ei – the flow direction: Positive
values represent an outflow and negative values an inflow be-
havior. This leads to the following classification of first order
critical points:

Sources: 0 <Re(λ1)≤Re(λ2)≤Re(λ3)

Repelling saddles: Re(λ1)< 0 <Re(λ2)≤Re(λ3)

Attracting saddles: Re(λ1)≤Re(λ2)< 0 <Re(λ3)

Sinks: Re(λ1)≤Re(λ2)≤Re(λ3)< 0

Thus, sources and sinks consist of complete outflow/inflow,
while saddles have a mixture of both. A repelling saddle has
one direction of inflow behavior (called inflow direction) and
a plane in which a 2D outflow behavior occurs (called out-
flow plane). Similar to this, an attracting saddle consists of
an outflow direction and an inflow plane.

Each of the 4 classes above can be further divided into
two stable subclasses by deciding whether or not imaginary
parts in two of the eigenvalues are present (λ1,λ2,λ3 are not
ordered):

Foci: Im(λ1) = 0 and Im(λ2) = −Im(λ3) �= 0

Nodes: Im(λ1) = Im(λ2) = Im(λ3) = 0

An iconic representation is an appropriate visualization
for critical points, since vector fields usually contain a finite
number of them. Several icons have been proposed in the lit-
erature, see [HH91, GLL91, LDG98, HG00, TWHS03]. Ba-
sically, we follow the design approach of [TWHS03] and
color the icons depending on the flow behavior: Attracting
parts (inflow) are colored blue, while repelling parts (out-
flow) are colored red (Figures 2 and 3).

In contrast to [TWHS03], we use elliptic cylinders instead
of flat ellipses to depict the outflow/inflow planes of the sad-
dles. We propose this change for a better three-dimensional
perception of the icons by the user. Additionally, the icons
can be much better distinguished from other topological fea-
tures near them, like e.g. saddle connectors. This can be fur-
ther enhanced by coloring them slightly darker or lighter.
See Figure 4 for a comparison.

Higher order critical points are not considered in this pa-
per.
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Figure 2: Sources and sinks; (a) repelling node and (b) its
icon; (c) repelling focus and (d) its icon; (e) attracting node
and (f) its icon; (g) attracting focus and (h) its icon.

e1

e2

e3

e1

f1

e1

e2

e3 e3

f3

(a) (c) (d)(b)

(e) (f) (g) (h)

Figure 3: Repelling and attracting saddles; (a) repelling
node saddle and (b) its icon; (c) repelling focus saddle and
(d) its icon; (e) attracting node saddle and (f) its icon; (g)
attracting focus saddle and (h) its icon.

Figure 4: Topological skeleton of the benzene data set
showing saddle connectors and critical points. Left: Out-
flow/inflow planes of the saddle points depicted with flat el-
lipses. Right: Our enhanced design using elliptic cylinders.
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2.2. Separatrices

Separatrices are stream lines or stream surfaces which sep-
arate regions of different flow behavior. Different kinds of
separatrices are possible: They can emanate from critical
points, boundary switch curves, attachment and detachment
lines, or they are closed separatrices without a specific em-
anating structure. However, in this paper we consider sep-
aratrices starting from critical points and boundary switch
curves only.

Due to the homogeneous flow behavior around sources
and sinks (either a complete outflow or inflow), they do not
contribute to separatrices. Each saddle point creates two sep-
aratrices: Considering a repelling saddle xR, it creates one
separation curve (which is a stream line starting in xR in the
inflow direction by backward integration) and a separation
surface (which is a stream surface starting in the outflow
plane by forward integration). A similar statement holds for
attracting saddles.

Separatrices starting from boundary switch curves will be
discussed in detail in section 3.

2.3. Saddle Connectors

Visualizing a rather complex topological skeleton involves
showing a number of separation surfaces. This does not lead
to visually pleasing results, because these surfaces hide most
parts of the skeleton.

A solution of this problem is the appliance of saddle con-
nectors, which were recently introduced in [TWHS03]. A
saddle connector is the intersection curve of two separation
surfaces, where one is emanating from a repelling and the
other from an attracting saddle. This intersection curve is a
stream line connecting both saddles, i.e. it starts at the re-
pelling and ends at the attracting saddle.

[TWHS03] uses double flow ribbons for visulizing saddle
connectors (Figure 4). Although this approach incorporates
the local behaviour of the separation surfaces, one can no
longer uniquely infer the flow behavior of v from any point
of the domain. Therefore, [TWHS03] enables the user to in-
teractively demand the display of single separation surfaces
by simply clicking on a saddle connector.

3. Boundary Switch Curves

Consider the 3D vector field v from (1) in the domain

D = (xmin,xmax)× (ymin,ymax)× (zmin,zmax) (2)

with xmin < xmax, ymin < ymax, zmin < zmax. We assume that
no critical point of v lies on the boundary surfaces of D.
Furthermore, D might be the whole domain in which v is de-
fined, or it may be interactively modified and moved around
in the data set, leading to a "local topology" ([SHJK00]).

The boundary surfaces of D (which are the 6 faces of the

x

y

z

Figure 5: Boundary plane z = zmin consisting of an in-
flow area (blue), an outflow area (red), and their separat-
ing boundary switch curve; shown are 4 vectors of v on the
boundary switch curve, and one each in the inflow and out-
flow area.

bounding box) consist of outflow and inflow areas which
are separated by boundary switch curves. Boundary switch
curves consist of all points on the boundary where the flow
direction is tangential to the boundary surface. Figure 5
illustrates an example of the boundary plane z = zmin con-
sisting of one inflow and one outflow area. (In the following
we illustrate the concept of boundary switch curves only on
the boundary plane z = zmin. Similar statements hold for the
5 remaining boundary planes of D.)

In general, boundary switch curves do not intersect each
other. The case of intersecting boundary switch curves can
be considered to be structurally unstable: a small perturba-
tion of v removes the intersection. Because of this, intersec-
tions of boundary switch curves are not considered here.

Given a point p0 on a boundary switch curve, two cases
are possible concerning the stream line starting at p0:

• Starting from p0, the stream line integration moves inside
D for both backward and forward integration. We call this
point an inbound point on the boundary switch curve (Fig-
ure 6a).

• Starting from p0, the stream line integration moves out-
side D for both backward and forward integration. There-
fore, this stream line in D consists only of p0 itself. We
call this point an outbound point (Figure 6b).

To distinguish inbound from outbound points, two ap-
proaches can be used:

1. Decide whether v(p0) points into the inflow or the out-
flow area. If v(p0) points into the inflow area, p0 is an in-
bound point. If v(p0) points into the outflow area, p0 is an
outbound point. This condition corresponds to the classi-
fication of boundary switch points for 2D vector fields
given in [dLvL99a].

2. Consider the second derivative vector v̇ of the stream
lines as a local property of v (assuming that the tangent
vectors of the stream lines are given by v). This gives

v̇(x,y,z) =




u̇(x,y,z)
v̇(x,y,z)
ẇ(x,y,z)


 = u vx + v vy + w vz.
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Figure 6: a) inbound point p0 on a boundary switch curve:
v(p0) points into the inflow area, v̇(p0) points inside D;
shown is a part of the stream line starting in p0 both in for-
ward and backward integration; b) outbound point p0 on a
boundary switch curve; v(p0) points into the outflow area,
v̇(p0) points outside D; shown is a stream line close to p0
starting in the inflow area and leaving D in the outflow area.

See [TF97] and [WT02] for details of this. (v̇ can for ex-
ample be used to compute the curvature of the stream

lines in every point of D: κ = ‖v×v̇‖
‖v‖3 .) Then p0 is an in-

bound point if v̇(p0) points into D. If v̇(p0) points out of
D, p0 is an outbound point.

Figure 6 illustrates both criteria. It can be shown by a
straightforward exercise in algebra that both criteria 1. and 2.
are equivalent. We preferred to use condition 2., since for a
domain D given in (2), it turns out to be simply a sign check
of one component of v̇.

Inbound points and outbound points form inbound seg-
ments and outbound segments on the boundary switch curve.
These segments are separated by inout points. A point p0 is
an inout point if v(p0) is parallel to the tangent direction of
the boundary switch curve in p0 (or equivalently, if v̇(p0)
lies in the tangent plane of the considered boundary of D).
For a boundary switch curve, we extract all inout points and
thus divide the curve into a number of inbound and outbound
segments (Figure 7a).

The distinction between inbound segments and outbound
segments plays an important role for the topological segmen-
tation of a 3D vector field, because the inbound segments are
the seeding curves of the separation surfaces emanating from
the boundary of D. Figure 7b shows an example. Outbound
segments do not contribute to separation surfaces in the 3D
flow.

3.1. Extracting Boundary Switch Curves

Assuming v to be piecewise trilinear and z = zmin being
a grid plane of the underlying grid, the boundary switch

x
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z

a)

x
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Figure 7: a) boundary switch curve consisting of one in-
bound segment (dark red) and one outbound segment (dark
blue); they are separated by an inout point (green); b) sep-
aration surface starting from an inbound segment in both
forward and backward integration.
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Figure 8: Description of a hyperbolic segment as a piece-
wise rational quadratic Bézier curve.

curves are the zeros of the piecewise biquadratic scalar field
w(x,y,zmin) from (1). It is a well-known fact that these
isocurves consist of piecewise hyperbolas with G0 continu-
ous junction points. We extract and describe each hyperbolic
curve segment as a rational quadratic Bézier curve h(t) de-
scribed by the Bézier points b0,b1,b2 and the corresponding
weights g0,g1,g2 with g0 = g2 = 1. This way, b0 and b2 are
the intersections of the curve with the grid lines (obtained by
a linear interpolation), b1 is obtained as the intersection of
the tangents at b0 and b2 (which are computed as the gradi-
ents of w(x,y,zmin)), and g1 is chosen such that w(h(t))≡ 0.
Figure 8 gives an illustration.

3.1.1. Finding Inbound and Outbound Segments on
Boundary Switch Curves

If v is a piecewise trilinear vector field, all junction points of
the piecewise hyperbolic segments are candidates for being
an inout point. In addition, up to 4 inout points may exist in-
side a hyperbolic boundary switch curve segment. Therefore
we have applied numerical methods to get the inout points
and thus find the inbound and outbound segments.

If v is piecewise linear, then the boundary switch curves
are piecewise linear curves, and inout points can be the junc-
tions of the linear curve segments as well as up to one addi-
tional point inside each linear segment. This point can di-
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Figure 9: a) boundary switch point on a vertex of the rect-
angular domain of a 2D vector field; b) inbound segments
on the edges of D do not exist.
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Figure 10: a) inflow/outflow behavior on two faces of D
creates two boundary switch curves on the shared edge;
these boundary switch curves are always outbound seg-
ments; b) inbound boundary switch point divides D into 3
areas A1,A2,A3.

rectly be computed by solving a 2×2 system of linear equa-
tions.

3.1.2. Boundary Switch Curves on the Edges of D

Up to now we only considered boundary switch curves on
the faces of D defined by (2). However, the edges of D
are candidates for being boundary switch curves as well,
since the two faces sharing an edge may have a different
inflow/outflow behavior. (Figure 9a gives a 2D example of
a boundary switch point on a vertex of a rectangular do-
main.) Hence, also the edges of D have to be checked for
being boundary switch curves. This is done by computing
the inflow/outflow behavior of the faces of D which share
the edge. Figure 10a illustrates an example.

Boundary switch curves on edges are always outbound
segments which therefore do not create separation surfaces.
To show this, consider figure 9b. If a point on the edge of
D is an inbound point, it must have a curvature diverging to
infinity. Since this only happens for critical points [WT02]
and critical points are not supposed to be on the boundary,
an inbound segment on an edge cannot exist.

4. Boundary Switch Connectors

Each inbound segment of a boundary switch curve creates
two separation surfaces: one is obtained by applying a for-
ward integration starting from the boundary switch curve,
the other one by backward integration. These two separa-
tion surfaces divide the flow into three areas of different

inflow/outflow behavior. Figure 10 illustrates this for a 2D
example. Unfortunately, the visualization of all those sep-
aration surfaces creates the same problems as [TWHS03]
identified for separation surfaces starting from saddles: if a
higher number of separation surfaces is present, their visual-
ization tends to be cluttered due to various occlusion effects.
Figure 1(top) illustrates this.

The solution for this problem we propose here is an exten-
sion of the idea in [TWHS03]: instead of visualizing the sep-
aration surfaces directly, we compute all intersection curves
of these surfaces and visualize this skeleton of curves. In
fact, here we choose a general approach which yields the
intersection curves of all separation surfaces starting either
from a saddle point or a boundary switch curve. Analyzing
these curves, we obtain the following properties:

• The intersection curves of two separation surfaces are
stream lines. This is due to the fact that the intersection
of two stream surface is always a stream line (or degener-
ate).

• Each intersection curve starts either in the outflow plane
of a repelling saddle, or on a boundary switch curve by
integrating in forward direction.

• Each intersection curve ends either in the inflow plane of
an attracting saddle or on a boundary switch curve by in-
tegrating in backward direction.

The latter two statements give the following classification
regarding the intersection curves of the separation surfaces:

1. The curve starts in a repelling saddle and ends in an at-
tracting saddle. (Figure 11a)

2. The curve starts in a repelling saddle and ends in a bound-
ary switch curve. (Figure 11b)

3. The curve starts in a boundary switch curve and ends in
an attracting saddle. (Figure 11c)

4. The curve starts in a boundary switch curve and ends in a
different boundary switch curve. (Figure 11d)

5. The curve starts in a boundary switch curve and ends in
the same boundary switch curve. (Figure 11e)

Case 1. has been treated in [TWHS03]. Since these curves
start and end in two saddles, [TWHS03] calls them sad-
dle connectors. In this paper we particularly focus on the
cases 2.–5. and since all these curves start or end in bound-
ary switch curves, we call them boundary switch connec-
tors. Therefore, the main idea of our approach is to extract
all saddle connectors and all boundary switch connectors of
a vector field and visualize them.

When intersecting two separation surfaces, the result may
be not a curve but a surface as well. We consider this as
a degenerate case which we do not take into account here.
However, note that the intersection of two separation sur-
faces may give more than one single intersection curve.
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Figure 11: Cases of intersection curves of separation sur-
faces: a) saddle connectors; b)-e) boundary switch connec-
tors.

4.1. Computing Boundary Switch Connectors

Boundary switch connectors are a global feature of a 3D
vector field. A naive approach to extract them is to numer-
ically integrate all separation surfaces and intersect the re-
sulting triangle meshes to get a polygonal representation of
the connectors. This approach has turned out to have limita-
tions concerning accuracy and memory requirements. So we
use an algorithm which makes use of the fact that the inter-
section of two separation surfaces is a stream line. Such an
algorithm was described in [TWHS03] to extract saddle con-
nectors. Fortunately, this algorithm can directly be extended
to extract boundary switch connectors. Se we describe the
main idea here and refer to [TWHS03] for the details.

To find the intersection between a separation surface in
forward integration and a separation surface in backward in-
tegration, we integrate both separation surfaces simultane-
ously until a first intersection point p1 is found. After re-
fining this intersection point (see [TWHS03] for details), a
stream line from p1 is integrated both forwards and back-
wards. This stream line is the boundary switch connector.
Figure 12 gives an illustration of this algorithm.

After finding a first boundary switch connector, both sep-
aration surfaces are continued to be integrated to find further
intersections which are not covered yet by the first bound-

x

y

z

Figure 12: Finding the intersection of two separation sur-
faces – one comes from a saddle, while the other one comes
from a boundary switch curve; shown is the situation short
before an intersection is found; in the next integration step
an intersection point p1 is found which defines the boundary
switch connector.

ary switch connector. If such a new intersection point p2 is
found, a new boundary switch connector is obtained from
p2. This process stops when one of the following conditions
are fulfilled:

• One of the separation surfaces completely leaves D or de-
generates to a number of critical points.

• The maximal number nmax of boundary switch connectors
between two separation surfaces is found, or the maximal
number tmax of integration steps has been reached. nmax

and tmax have to be set by the user.

To obtain all boundary switch connectors, we simultane-
ously integrate all separation surfaces and check for intersec-
tions. If an intersection between any two of them is found, a
boundary switch connector is constructed from this intersec-
tion point. A separation surface is excluded from this process
if it leaves D or collapses to critical points.

4.2. Visual Representation of Boundary Switch
Connectors

Since boundary switch connectors are stream lines, a vi-
sual representation for instance as illuminated stream lines
([ZSH96]) is possible. However, we want to emphasize the
fact that such stream lines are obtained as the intersection of
two separation surfaces. Hence we choose a double stream
ribbon representation to additionally show the orientation of
the intersecting surfaces in each point of the stream line.
To do so, a second curve has to be constructed close to the
boundary switch connector. Then the ribbon is constructed
between the second curve and the boundary switch connec-
tor. To get this curve, two problems have to be solved:

1. An appropriate starting point has to be found close to the
starting point of the original boundary switch connector.

2. A simultaneous stream line integration and correction of
the distance to the boundary switch connector has to be
applied to keep both curves in the same distance to each
other.
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a) b) c)

Figure 13: Starting points (grey balls) for the double flow
ribbon integration; a) for saddle connectors; b) for bound-
ary switch connectors starting in a saddle; c) for boundary
switch connectors starting on a boundary switch curve.

An algorithm solving these problems for saddle connectors
was proposed in [TWHS03]. Here we use a modification
of this. In fact, for step 1. we need a different approach,
since [TWHS03] starts the additional integration on a point
in the inflow/outflow direction of the saddles (Figure 13a).
For boundary switch connectors, we have to choose the start-
ing point in a different way: if the separation surface starts in
a saddle, we place the starting point into the inflow/outflow
plane, perpendicular to the direction of the boundary switch
connector, with a certain predefined distance ε to the saddle
point (Figure 13b). If the boundary switch connector starts
from a boundary switch curve, the starting point is located
on the boundary switch curve in a certain distance ε to the
starting point of the connector (Figure 13c).

5. Applications

We applied the concept of boundary switch connectors to
two 3D data sets of a rather complex topology.

Figures 14a–d visualize a snapshot of a transitional wake
behind a circular cylinder [ZFN∗95]. This flow exhibits peri-
odic vortex shedding leading to the well known von Kármán
vortex street. This phenomenon plays an important role in
many industrial applications, like mixing in heat exchangers
or mass flow measurements with vortex counters. However,
this vortex shedding can lead to undesirable periodic forces
on obstacles, like chimneys, buildings, bridges and subma-
rine towers.

This data set was derived from a direct numerical sim-
ulation of the Navier-Stokes equation by Gerd Mutschke
[Mut03]. The data resolves the so-called ‘mode A’ of the 3D
transition at a Reynolds number of 200 and at a spanwise
wavelength of 4 diameters. The figures display a small near-
wake region of a large computational domain. All 13 critical
points are contained in the shown domain and on its bound-
aries 13 boundary switch curves are observed. Together they
span the topological skeleton of the incompressible velocity
field.

The inspection of figure 14a suggests a high amount of
circulating flow behaviour in the data set, but due to the oc-
clusion effects introduced by the separation surfaces neither
the flow behaviour on the boundaries nor the critical points
can be seen easily. This complicates further examinations to
a high degree.

detected features Benzene Cylinder

critical points (A / R saddles) 184 (78 / 43) 13 (7 / 6)

BS curves / inbound segments 12 / 16 13 / 22

A / R separation surfaces 94 / 59 29 / 28

connectors (overall) 181 59

BS connectors B ↔ B / B ↔ Sa 24 / 28 29 / 21

saddle connectors 129 9

Table 1: Number of features detected by our algorithms.

The simplified topological skeletons shown in Figures
14b–d enable to reduce this high-dimensional data set to a
simple conceptual flow representation from which qualita-
tive conclusions can be drawn. Using connectors, the skele-
ton elucidates the symmetry of the mode A with respect to a
plane which is perpendicular to the cylinder axis. The high
number of spanwise and transverse running connectors of a
single snapshot already indicate the experimentally observed
good mixing properties of vortex shedding.

Figure 1 visualizes the electrostatic field around a benzene
molecule. This data set was calculated on a 1013 regular grid
using the fractional charges method described in [SS96]. For
this visualization we used a smaller subdomain around the
molecule itself. All 184 critical points are inside the shown
region.

Table 1 gives a summary of the data sets and shows
the topological richness of both. These examples show that
boundary switch and saddle connectors give expressive visu-
alizations even for topologically complex 3D vector fields.

6. Conclusions

In this paper we have introduced the concept of bound-
ary switch connectors as a new approach to visualizing the
topological skeleton of complex 3D vector fields. Bound-
ary switch connectors are particular stream lines which con-
nect boundary switch curves with either a saddle or another
boundary switch curve. They can be considered as a gener-
alization of saddle connectors ([TWHS03]) which connect
two saddles.

We described all cases of boundary switch connectors. To
extract them, we used an extension of the algorithm for ex-
tracting saddle connectors. For the visual representation we
have chosen a double stream ribbon approach which needed
– compared to [TWHS03] – a new choice of the starting
point of the ribbon integration. Furthermore, we gave an en-
hanced iconic representation of saddle points by using ellip-
tic cylinders instead of flat ellipses.

Similar to saddle connectors, boundary switch connectors

c© The Eurographics Association 2004.
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(a) Separation surfaces emanating from boundary switch curves and
saddles.

(b) Boundary switch connectors between boundary switch curves.

(c) Boundary switch connectors between saddle points and boundary
switch curves.

(d) Saddle connectors and both types of boundary switch connectors.

Figure 14: Flow behind a circular cylinder. Different topological representations.

can be interpreted as a "skeleton of a skeleton" approach
which computes and visualizes a geometrically simplified
representation of the system of separation surfaces. We have
shown that the application of boundary switch connectors
gives expressive visualizations even for topologically com-
plex flow areas, i.e. areas where many critical points and
boundary switch curves are present.
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