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Summary: Feature Flow Fields (FFF) are an approach to tracking features in
a time-dependent vector field v. The main idea is to introduce an appropriate
vector field f in space-time, such that a feature tracking in v corresponds
to a stream line integration in f. The original approach of feature tracking
using FFF requested that the complete vector field v is kept in main memory.
Especially for 3D vector fields this may be a serious restriction, since the
size of time-dependent vector fields can exceed the main memory of even
high-end workstations. We present a modification of the FFF-based tracking
approach which works in an out-of-core manner. For an important subclass of
all possible FFF-based tracking algorithms we ensure to analyze the data in
one sweep while holding only two consecutive time steps in main memory at
once. Similar to the original approach, the new modification guarantees the
complete feature skeleton to be found. We apply the approach to tracking of
critical points in 2D and 3D time-dependent vector fields.

1 Introduction

The resolution of numerical simulations as well as experimental measurements
like PIV have evolved significantly in the last years. The challenge of under-
standing the intricate flow structures within their massive result data sets has
made automatic feature extraction schemes popular. Feature-based analysis
can be seen as a kind of data reduction since it brings the raw data mass down
to a small number of graphical primitives that ought to give insight into the
flow structures. While the outcome of most feature extraction algorithms has
a rather small memory footprint, the input often exceeds the main memory
of high-end workstations. This is especially true for 3D time-dependent data.
Thus, feature extraction algorithms should be compatible to an out-of-core
data handling, i.e., treating only a small part of the input at once.

A number of algorithms already work in an out-of-core manner. Tricoche
et al. [16] and Garth et.al. [3] show how to track critical points in piecewise
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linear vector fields by analyzing the data in one sweep and holding only two
time slices at once. Their approaches exploit the linearity of non-changing
piecewise linear grids and are probably the best way to go for this important
class of data.

Another way of tracking features which are defined by the parallel vector
operator [8] is introduced in [1]. This approach is based on a 4-dimensional
isosurface extraction — and therefore compatible to out-of-core data handling.

Theisel et al. [13] propose a general approach to feature tracking by cap-
turing the temporal evolution of a feature using a stream object® integration
in a derived vector field — the feature flow field (FFF). This basic idea has
been applied not only to tracking critical points [13] and derived applications
like simplification [11] and comparison [12], but also to extracting Galilean
invariant vortex core lines [10] and tracking closed stream lines [14]. The FFF
approach is independent of an underlying grid, i.e., it is entirely based on
the description of the data as a continuous field. At first glance, this concept
seems to contradict the principle of out-of-core data handling: treating only a
small part of the data at once. In this paper we show that those two concepts
do not contradict. In fact, we show how all FFF-based tracking algorithms
can be formulated in an out-of-core manner. This will be used to re-formulate
the algorithm for tracking critical points from [13] to make it compatible to
out-of-core data handling. The resulting algorithm enables to analyze the data
in one sweep while holding only two time slices at once.

The rest of the paper is organized as follows: section 2 surveys the FFF ap-
proach as described in [13] and the basics of out-of-core data handling. Section
3 describes the new out-of-core version of the FFF approach. Section 4 applies
this knowledge to FFF-based tracking of critical points, while conclusions are
drawn in section 5.

2 Background and Problem

In this section we briefly discuss the basics behind out-of-core data handling
and feature flow fields. While their main ideas are not antagonistic, a typical
algorithm based on FFF is incompatible with an out-of-core data handling.

2.1 Out-Of-Core Data Handling

Out-of-core refers to the data handling strategy of algorithms, which process
data too large to fit into main memory. Thus, only parts of the data can
be loaded at once and acted upon. Since loading the data from a mass stor-
age device is very time-consuming, the number of those operations should
be reduced to a minimum. This restriction must already be considered when
formulating the algorithm.

5 This refers to a stream line, stream surface, stream volume, etc. — depending on
the dimensionality of the feature.
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Fig. 1. Out-of-core data handling strategies.

There are different types of out-of-core data handling strategies. We just
want to mention two here:

e Block-wise random access: Data is loaded in blocks of same size. All di-
mensions are treated equally. The loaded data block with the oldest access
time is subject to be substituted with the next block to be loaded. An
application for this access pattern is the integration of a path line, which
touches only parts of the domain. Figure la gives an illustration.

o Slice-wise sequential access: Data is loaded in slices, i.e., one dimension is
fixed for every slice. Slices will be loaded as a fixed sequence in ascending
or descending order. The procedure to load all slices from first to last is
called a sweep. A very common approach is the usage of time slices, since
a number of data sets are organized such that each time step is given as a
separate file. An application for this access pattern is the extraction of fold
bifurcations, where all parts of the domain need to be examined. Figure
1b gives an illustration.

Feature extraction algorithms usually do not have a-priori knowledge about
the location of the feature and therefore, they need to examine the whole do-
main. A slice-wise sequential access strategy seems to be even more preferable,
if the data is already given in time slices. For the rest of this paper we con-
sider this data handling strategy only. Note, that by loading two consecutive
time steps t; and t;41 and applying a linear interpolation in between them,
we obtain the time-dependent field in that time interval.

2.2 Feature Flow Fields

The concept of feature flow fields was first introduced in [13]. It follows a
rather generic idea:

Consider an arbitrary point x known to be part of a feature in a (scalar,
vector, tensor) field v. A feature flow field f is a well-defined vector field at
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Fig. 2. Feature tracking using feature flow fields. Features at ¢;+1 can be observed
by intersecting these stream lines with the time plane t = ;1.

X pointing into the direction where the feature continues. Thus, starting a
stream line integration of f at x yields a curve where all points on this curve
are part of the same feature as x.

FFF have been used for a number of applications, but mainly for tracking
features in time-dependent fields. Here, f describes the dynamic behavior of
the features of v: for a time-dependent field v with n spatial dimensions, f
is a vector field R™™ — IR"™!. The temporal evolution of the features of v
is described by the stream lines of f. In fact, tracking features over time is
now carried out by tracing stream lines. The location of a feature at a certain
time ¢; can be obtained by intersecting the stream lines with the time plane
t;. Figure 2a gives an illustration.

Depending on the dimensionality of the feature at a certain time t;, the
feature tracking corresponds to a stream line, stream surface or even higher-
dimensional stream object integration. The stream lines of f can also be used
to detect events of the features:

e A birth event occurs at a time tp, if the feature at this time is only de-
scribed by one point of a stream object of f, and all stream lines in the
neighborhood of this point are in the half-space t > ;.

e A split occurs at a time t, if one of the stream lines of f describing the
feature touches the plane t = t5 “from above”.

e An exit event occurs if all stream lines of f describing the feature leave the
spatial domain.

The conditions for the reverse events (death, merge, entry) can be formulated
in a similar way. Figure 2b illustrates the different events.

Integrating the stream lines of f in forward direction does not necessarily
mean to move forward in time. In general, those directions are unrelated. The
direction in time may even change along the same stream line as it is shown
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in figure 2b. This situation is always linked to either a birth and a split event,
or a merge and a death event.

Even though we treated the concept of FFF in a rather abstract way, we
can already formulate the basics of an algorithm to track all occurrences of a
certain feature in a time-dependent field:

Algorithm 1 General FFF-based tracking

1. Get seeding points/lines/structures such that the stream object integration of £
guarantees to cover all paths of all features of v.

2. From the seeding structures: apply a numerical stream object integration of f in
both forward and/or backward direction until it leaves the space-time domain.

3. If necessary: remove multiply integrated stream objects.

Algorithm 1 is more or less an abstract template for a specific FFF-based
tracking algorithm like e.g. tracking of critical points. However, it shows a
vital contradiction to out-of-core data handling: it gives no guarantee on how
the data is processed. We would end up loading different data slices more than
once, since both forward and backward integration of f are allowed, and as
already said, the direction in time may even change along the same stream
line.

3 Feature Flow Fields and Out-Of-Core Algorithms

In this section we want to modify algorithm 1 such that it becomes compat-
ible to out-of-core data handling. This will allow to formulate all FFF-based
algorithms in an out-of-core manner. Before we formulate the algorithm, we
collect some concepts and properties of the FFF integration on which the new
algorithm is based upon.

3.1 Direction of Integration Regarding Time

The FFF approach is based on a stream line integration of f. Given a starting
point xg = (x§,t0), f can be integrated in forward or backward direction.
Assuming an Euler integration®, the forward integration goes to the next
point x; = xg + € f(x¢), while the backward integration gives the next point
x1 = xg—¢ (%) for a certain small positive e. In addition to this distinction of
the integration orientation, we can also distinguish a t-forward and ¢-backward
orientation. We call an integration t-forward if the next point x; = (z5,t1) is
ahead in time, i.e., if t; > to. For t; < tg, we have a t-backward integration.
This property can be decided locally for a point xg by looking at the sign of
the t-component of f(xg), or if this component is zero, by looking at the sign
of the partial derivative f;(xo). Figure 3 illustrates some of these cases.

5 For the actual integration we used a fourth order Runge Kutta method, the Euler
integration is only for explaining the concepts.
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Fig. 3. Orientation of integrating f: a) forward and ¢-forward; b) forward and ¢-
backward; c) backward and ¢-forward; d) backward and t-backward; the curves are
the integrated stream lines starting from xo.

3.2 Classification of Seeding Structures

The FFF approach is also based on finding appropriate starting structures
for the integration. The definition of a complete set of seeding structures is
up to the specific FFF-based application. However, we can give the following
classification of those structures:

t-forward structures: all integrations started here are t-forward only.
t-backward structures: all integrations started here are t-backward only.
intermediate structures: a t-forward and a t-backward integration will
be started here.

This classification is independent of a specific FFF-based application,
though it might be that in certain cases a class of structures is empty, e.g. there
are only t-forward and intermediate structures but no t-backward structures.

As already discussed in section 2.2, a t-forward integration may change
to a t-backward integration even along the same stream line. This situation
is always linked to either a birth or a death event, which perfectly fit into
the classification: a birth event is a t-forward point, and a death event a
t-backward point.

3.3 Out-Of-Core FFF-based Tracking Algorithm

The split of the integration into different directions regarding the time is the
conceptual key to an out-of-core version of algorithm 1:

Algorithm 2 QOut-of-core FFF-based tracking

1. Load the data in a slice-wise sequential manner from tmin t0 tmaez. For each

time interval between the time slices t; and ti41:

a) Get seeding structures such that the stream object integration of f guarantees
to cover all paths of all features of v.

b) Classify the seeding structures into t-forward, t-backward and intermediate
structures.

¢) Start a t-forward integration at all t-forward and intermediate structures.
Stop the integration, if

i. the spatial domain was left.
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. the temporal domain of the time interval was left, i.e., the integration
reached tiy1. Add the result of this integration to the list of t-forward
structures for the next time interval.

11i. a death event was reached. If this point will not be reached by any other
t-forward integration, add the result to the list of t-backward structures.

2. If the list of t-backward structures is non-empty: load the data in a slice-wise
sequential manner from tmaz t0 tmin. For each time interval between the time
slices t; and ti—1 start a t-backward integration at all t-backward and interme-
diate structures similar as above.

3. Repeat the stream object integrations of steps 1 and 2 until the lists of seeding
structures are empty.

The basic idea of this algorithm template is to ensure that the direction
of loading the data coincides with the direction of integration, i.e., if we are
loading the data from t,,;, to t;.. then we are integrating t-forward only,
and the other way around. This alone does not sound very effective, since the
data might been loaded more than once, possibly even an unknown number
of times.

This changes, if we take a closer look at the ¢t-forward structures, i.e., all
points where only a t-forward integration is intended. At those points the
features appear for the first time. Examples are entry points, birth events or
all occurrences of the feature at t,,;,. If we can find all t-forward structures
while doing the first sweep through the data, then the whole feature skeleton
can be extracted with this one sweep. This is always fulfilled, if all types of
t-forward structures are locally defined, i.e., they can be extracted by a local
analysis. Under these prerequisites, we can reformulate algorithm 2 and obtain
the following algorithmic template:

Algorithm 3 One-sweep Out-of-core FFF-based tracking
1. For each time interval [ti,ti+1] from tmin t0 tmax:
a) Extract all t-forward seeding structures needed to cover all paths of all fea-

tures of v.

b) Apply a t-forward integration starting at those structures until

i. the spatial domain was left.

. the temporal domain of the time interval was left, i.e., the integration
reached tiy1. Add the result of this integration to the list of t-forward
structures for the next time interval.

11. a death event was reached.

Algorithm 3 ensures that every path of a feature is integrated only once.
Thus, a removal of multiply integrated stream objects is not needed anymore.
In comparison to algorithms 1 and 2 it is perfectly fitted for large data sets:
it reads only parts of the data and each part only once.

4 Application to Tracking of Critical Points

Critical points, i.e. isolated points with a vanishing flow, are perhaps the most
important topological feature of vector fields. For static fields, their extrac-
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tion and classification is well-understood both in the 2D [6] and the 3D case
[17]. Critical points also serve as the starting points of certain separatrices,
i.e. stream lines/surfaces which divide the field into areas of different flow
behavior. Topological methods have not only been developed for visualization
purposes [4, 5], but have also been applied to simplify [2, 15], smooth [18],
and compress [11, 7] vector fields. A thorough overview can be found in [9].

Considering a stream line oriented topology of time-dependent vector
fields, critical points smoothly change their location and orientation over time.
In addition, certain bifurcations of critical points may occur. To capture the
topological behavior of time-dependent vector fields, it is necessary to capture
the temporal behavior of the critical points.

Theisel et al. introduced in [13] a FFF-based approach to track critical
points, which matches algorithm 1. In order to track critical points in an
effective out-of-core manner using algorithm 3 we need to find the complete
set of t-forward points, i.e., all points in space-time where a critical point
appears for the first time. This will be done in section 4.2. But before that we
discuss the definition of the feature flow field f itself.

4.1 FFF for Tracking Critical Points

We first consider tracking critical points in a 2D time-dependent vector field,

which is given as
u(x,y,t
vt = (1)) 1)

in the 3D space-time domain D = [Znin, Tmaz] X [Ymin, Ymaz] X [Emin, tmaz]-
We can construct a 3D vector field f in D with the following properties: for
any two points xo and x; on a stream line of f, it holds v(xg) = v(x1). This
means that a stream line of f connects locations with the same values of v.
Figure 4 gives an illustration. In particular, if xg is a critical point in v, then
the stream line of f describes the path of the critical point over time. To get
f, we search for the direction in space-time in which both components of v
locally remain constant. This is the direction perpendicular to the gradients
of the two components of v. We get

Uy Vg det(vy, v¢)
f(z,y,t) = grad(u) x grad(v) = [ uy | x | vy | = | det(ve,va) | . (2)
Uy vy det(vy, vy)

The FFF approach for 3D vector fields is a straightforward extension of
the 2D case. Given the 3D time-dependent vector field

U(ZE? y7 Z’ t)
v(z,y,z,t) = | v(z,y,21) (3)
w(z,y, z,t)
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in the 4D space-time domain D = [Zimin, Tmaz] X [Ymin, Ymaz] X [Zmins Zmaz) X
[tmins tmaz], the 4D FFF f is defined by the conditions

£ L grad(u) = (ug,uy,us,ug)’ , £ L grad(v) , £ L grad(w).
This gives a unique solution for f (except for scaling)”

+det(vy, vz, vi)

| —det(vs, v, vy)

f(xayvz7t) - + det Vt7vfl,'7vy) . (4)
)

(
—det(vg, vy, v,

4.2 Complete Set of t-forward Points

Theisel and Weinkauf showed in [14] that two classes of seeding points guar-
antee that all paths of critical points are captured: the intersections of the
paths with the domain boundaries, and fold bifurcations. However, they did
not distinguish between t-forward and t-backward points. We are going to do
this here in order to find the complete set of t-forward points.

To find all intersections with the boundaries, we have to solve

V(& Y, tmin) = (0,0) and v(z, ¥, tmaz) = (0,0)” for the unknowns z, y,
V(& Ymin, t) = (0,0)" and v(z, Ymaz, t) = (0,0)” for the unknowns z, ¢,
V(Tmin,y,t) = (0, O)T and v(Zmaaz, Y, t) = (0, O)T for the unknowns v, t.

Each of the 6 solutions turns out to be a simple extraction of critical points
of a 2D (steady) vector field. We can make the following distinction:

e DBottom intersection points are intersections with the plane t = t,,;,

e Top intersection points are intersections with the plane t = t,,4.

o Side intersection points are intersections with the plane x = z,;,, T =
Timazs Y = Ymins OF Y = Ymaax Tespectively.

Side intersection points can be further classified into entry and exit points. At
an entry point, a t-forward integration of f goes into D, while at an exit point

" Note that the formulation of f(z,y, z,t) in [13] contains an error: the alternating
signs of the components are missing.
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Fig. 6. Classifying fold bifurcations by the last component of J¢(x) - f(x): a) birth
event; b) death event.

a t-forward integration leaves D. Figure 5a illustrates the different kinds of
intersection points with the boundary of D. It is easy to see that only bottom
and entry side intersections are t-forward points.

To detect fold bifurcations inside D, we search for locations x with

[v(x)=(0,0)" , det(Jy(x)) =0] (5)

where Jy is the Jabcobian matrix of v. (2) shows that the second condition of
(5) ensures that the last component of f vanishes, i.e., that f is parallel to the ¢-
axis. To solve (5), we use a numerical approach similar to extracting isolated
critical points in 3D vector fields. There are two kinds of fold bifurcations:
birth and death events. To distinguish them, we consider the last component
of Jg(x) - f(x) at the fold bifurcation. If this component is positive, we have
a birth bifurcation; if it is negative, a death bifurcation is present. Figure
6 illustrates this. It is easy to see that only birth bifurcations are t-forward
points.

For 3D time-dependent vector fields, the extraction of the seeding points
follows the same ideas. Boundary intersections are found as isolated critical
points of the 3D (steady) vector fields at the space-time domain boundary.
Again, only bottom and entry side intersections are of interest. Fold bifurca-
tions are the solutions of
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(a) At t;. (b) Entries. (c) Births.  (d) Integration.  (e) At t;q1.

Fig. 7. Application of algorithm 3: critical points tracked in one sweep.

[v(x) =(0,0,0)" , det(Jy(x))=0] (6)

which corresponds to numerically finding isolated critical points in 4D vector
fields. The distinction between births and deaths follows the 2D case.

‘We have found all points in space-time where a critical point can appear for
the first time: bottom and entry side intersections as well as birth bifurcations.
They can all be extracted using a local analysis. All prerequisites for algorithm
3 are fulfilled. Thus, we are now able to track critical points in 2D and 3D
time-dependent vector fields in an effective out-of-core manner: in one sweep
and by loading only two slices at once. We applied this algorithm to a random
2D time-dependent data set. Random vector fields are useful tools for a proof-
of-concept of topological methods, since they contain a maximal amount of
topological information. Figure 7 shows the execution of algorithm 3 between
two consecutive time steps ¢; and ¢;41.

Figure 8 shows the visualization of a vector field describing the flow over
a 2D cavity. This data set was kindly provided by Mo Samimy and Edgar
Caraballo (both Ohio State University) as well as Bernd R. Noack and Ivanka
Pelivan (both TU Berlin). 1000 time steps have been simulated using the com-
pressible Navier-Stokes equations; it exhibits a non-zero divergence inside the
cavity, while outside the cavity the flow tends to have a quasi-divergence-free
behavior. Instead of loading only two time steps at once, the data set has been
divided into 10 sections each consisting of 100 time steps (Figure 8a). Each
section fits easily into main memory and has been treated according to algo-
rithm 3. This approach reduced the overhead introduced by the out-of-core
handling. The computation time for this data set was 20 minutes. The topo-
logical structures visualized in Figure 8b elucidate the quasi-periodic nature
of the flow. The most dominating topological structures originate in or near
the boundaries of the cavity itself. The quasi-divergence-free behavior outside
the cavity is affirmed by the fact that a high number of Hopf bifurcations has
been found in this area.

5 Conclusions

In this paper we showed how all FFF-based tracking algorithms can be for-
mulated in an out-of-core manner. This has been used to re-formulate the
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(a) LIC planes: 10 sections. (b) Tracked critical points.

Fig. 8. Cavity data set consisting of 1000 time steps. Algorithm 3 has been applied
onto the 10 depicted sections consisting of 100 time steps each.

algorithm for tracking critical points from [13] to make it compatible to out-
of-core data handling. The resulting algorithm enables to analyze the data
in one sweep while holding only two time slices at once. For future work, we
intend to apply algorithm 3 to other types of features, especially to vortex
core lines.
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