Discrete-Event Simulation

14.11.2001
Contents

• Models and some modelling terminology

• How a discrete-event simulation works

• The classic example - the queue in the bank

• Example for a discrete-event simulation
Simulation

• A definition of simulation:
 1. Imitation of the operation of a real-world system
 2. Generation of an artificial history of a system
 3. Observation of the artificial history

• Simulation is performed using a *model*
Advantages of Simulation

• Simulation has many advantages:
 – study new designs without interrupting real system
 – study new designs without needing extra resources
 – Improve understanding of system
 – Manipulate time
 – Less dangerous / expensive / intrusive
Model

• A model:
 - is a set of assumptions about the operation of the system

• These assumptions can be:
 - algorithmic (sequence of steps)
 - mathematical (equations)
 - logical (conditions)

• This model can be "run" in order to study the real system
Abstraction & Idealisation

There are two main techniques for building models:

- Abstraction
- Idealisation

Abstraction means leaving out unnecessary details

- Represent only selected attributes of a customer

Idealisation means replacing real things by concepts

- Replace a set of measurements by a function
Systems

A group of objects that interact

System boundary

System environment

Placing the system boundary is the first difficult task in modelling
Example: Modelling a bank:

System environment
- Time of day
- Special events

System
- Customers
- Cashiers

System boundary
Example: Modelling the Earth's orbit:

- Earth
- Sun
- Moon

System environment

- Pluto?
- Asteroids?
Entities, Attributes & Activities

An entity is an object of interest in the system

- customer
- manager
- cashier

An attribute is a (relevant) property of an entity

- account balance
- gender
- skills

Attributes are state variables
Activities & Delays

An activity... ... is a duration of known length

check balance drink coffee serve customer

Activities form part of the model specification

A delay... ... is a duration of unknown length

Waiting time in queue

Delays form part of the simulation result
State, State Variables

The (system) state... ... is a description which is
 - complete and
 - minimal
at any point in time

A state variable... ... is a variable needed to describe the state

length of queue
(0, 1, 2, ...)
current activity of manager
(sleeping, drinking coffee, ...
Events

An event... ... is an occurrence which
- is instantaneous
- may change the state of the system

Customer arrives from outside
Manager wakes up
Service is completed
Steps in a Simulation Study

1. Problem formulation
2. Set objectives and plan
3. Conceptual model
4. Collect data
5. Create simulation model
6. Experimental design
7. Production runs & analysis
8. Documentation & report

Validation and Verification
Validation & Verification

Validation...
... means creating a correct model ("building the right model")

Verification...
... means writing a correct program ("building the model right")
Input-Output Transformation

- View the (real or simulated) system as a "black box"

- Black box transforms input variables into output variables

- Input variables are obtained by observing the real system

- Output variables are obtained by observing the real system and from the simulation experiment
Model Specification

- Discrete-event modelling raises the following questions:
 - How does each event affect the system state and attributes?
 - How are activities defined?
 - What events mark the beginning and the end?
 - What conditions (if any) must hold?
 - How are delays defined?
 - How must the simulation be initialised?
A Simulation Classic

• The single-server queue:

Bank

Queue

Service

Graham Horton
A Simulation Classic

• One possible problem formulation:
 - "Customers have to wait too long in my bank"

• A typical objective:
 - Determine the effect of an additional cashier on the mean queue length

• Data needed:
 - Inter-arrival times of customers
 - Service times
A Simulation Classic

- A typical simulation result:
Event Notice, Event List

- Event notice... ... A data record specifying an event

 The event notice must contain all the information necessary to execute the event (in particular the time it is scheduled to occur)

- (Future) event list...... A list of event notices for future events

 The event list is the main data structure in a discrete-event simulator
The Event List

- The (future) event list (FEL) controls the simulation
- The FEL contains all future events that are scheduled
- The FEL is ordered by increasing time of event notice
- Example FEL (at some simulation time $\leq t_1$):

$$(t_1, \text{Event}_1) \rightarrow (t_2, \text{Event}_2) \rightarrow (t_3, \text{Event}_3) \rightarrow (t_4, \text{Event}_4)$$

$t_1 \leq t_2 \leq t_3 \leq t_4$
Conditional and Primary Events

• A primary event... ... An event whose occurrence is scheduled at a certain time

Arrivals of customers

• A conditional event... ... An event which is triggered by a certain condition becoming true

Customer moving from queue to service
Conditional and Primary Events

• Primary event:

WHENEVER \(T \geq T\text{Arrive} \)
DO
\[
\begin{align*}
N\text{Queue}^\wedge & := N\text{Queue} + 1; \\
T\text{Arrive}^\wedge & := T + I\text{Arrive};
\end{align*}
\]
END

• Conditional event:

WHENEVER \((N\text{Server} = 0) \text{ AND } (N\text{Queue} > 0)\)
DO
\[
\begin{align*}
N\text{Queue}^\wedge & := N\text{Queue} - 1; \\
N\text{Server}^\wedge & := N\text{Server} + 1; \\
T\text{Service}^\wedge & := T + I\text{Service};
\end{align*}
\]
END
The Event List

• Example: Simulation of the \textit{Mensa}.

• Some state variables:

 # people in line 1

 # people at meal line 1 & 2

 # people at cashier 1 & 2

 # people eating at tables

\begin{tikzpicture}
\node[draw] (t1) {$(t_1, \text{Arrival})$};
\node[draw, right of=t1, xshift=2cm] (t2) {$(t_2, \text{Service completion at cashier 2})$};
\node[draw, right of=t2, xshift=2cm] (t3) {$(t_3, \text{Service completion at meal 1})$};
\node[draw, below of=t2] (t4) {$(t_4, \text{Finish eating})$};
\node[draw, right of=t4, xshift=2cm] (t5) {$(t_5, \text{Finish eating})$};
\draw[->] (t1) -- (t2);
\draw[->] (t2) -- (t3);
\draw[->] (t3) -- (t4);
\draw[->] (t4) -- (t5);
\end{tikzpicture}
The Event List

• Operations on the FEL:
 – Insert an event into FEL (at appropriate position!)
 – Remove first event from FEL for processing
 – Delete an event from the FEL

• The FEL is thus usually stored as a linked list
The Event List

- The simulator spends a lot of time processing the FEL
- In some cases, up to 40% of overall simulation time!
- Efficiency is thus very important
- Sequential search when inserting must be avoided: $O(n)$
- Solution: more advanced data structures (trees): $O(\log n)$
The Event List

• Example: Event "Customer arrives" in the bank model:

```plaintext
# Customer arrives
WHENEVER T >= TArrive
DO
    NQueue^ := NQueue + 1;
    TArrive^ := T + IArrive;
    DISPLAY ("T= %f Customer arrives\n",T);
END
```

• Executing this event at time T causes the event (T + IArrive, Customer arrives) to be inserted into the FEL
The Simulation Algorithm

FEL empty?

Remove and process 1st primary event

Remove and process conditional event

Conditional event enabled?
The Simulation Algorithm

- Remove and process 1st primary event:
 - Remove 1st primary event from FEL
 - Advance simulation time
 - Update state variables
 - Enter new future events into FEL
 - Compute statistics

- Every discrete-event simulator works like this
 (even if the programming model looks different!)
The Simulation Algorithm

(t₁, Arrival) → (t₂, Arrival)
(t₁, Move up) → (t₂, Arrival)
(t₂, Arrival) → (t₃, Service complete)
(t₄, Arrival) → (t₃, Service complete)
Timing

• Sometimes, activities last for an exact amount of time:
 - The clock cycle in a computer
 - Each phase of a traffic light
 - A certain operation in a manufacturing line

• Such exact times are *deterministic*
Timing

• Usually, activities last for varying amounts of time:
 - Inter-arrival times at bank
 - Service times at bank
 - Time to failure for a machine
 - Time that a user program runs

• Such times are *random* or *stochastic*
Random Variables

• If any quantity in a simulation is random, then ...

 ... the simulation result must also be random

• This can make things complicated:

 - The simulator will need to use random variables

 - We will need to do some statistics
Random Variables

- The best-known random variable:

 Discrete and uniformly distributed on $[1,6]$

 ![Dice](image)

 Discrete and uniformly distributed on $[1,4]$

 ![Triangle](image)
Simulating the Bank by Hand

<table>
<thead>
<tr>
<th>Arrival interval</th>
<th>Customer arrives</th>
<th>Begin service</th>
<th>Service duration</th>
<th>Service complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>11</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>14</td>
<td>1</td>
<td>15</td>
</tr>
</tbody>
</table>

Simulation clock: 15
Computing Statistics

Average waiting time for a customer: 1.25

<table>
<thead>
<tr>
<th>Arrival interval</th>
<th>Customer arrives</th>
<th>Begin service</th>
<th>Service duration</th>
<th>Service complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>11</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>14</td>
<td>1</td>
<td>15</td>
</tr>
</tbody>
</table>
Computing Statistics

P(customer has to wait): 0.75

<table>
<thead>
<tr>
<th>Arrival interval</th>
<th>Customer arrives</th>
<th>Begin service</th>
<th>Service duration</th>
<th>Service complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>11</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>14</td>
<td>1</td>
<td>15</td>
</tr>
</tbody>
</table>
Computing Statistics

P(Server busy): 0.66

<table>
<thead>
<tr>
<th>Arrival interval</th>
<th>Customer arrives</th>
<th>Begin service</th>
<th>Service duration</th>
<th>Service complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>11</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>14</td>
<td>1</td>
<td>15</td>
</tr>
</tbody>
</table>
Computing Statistics

<table>
<thead>
<tr>
<th>Arrival interval</th>
<th>Customer arrives</th>
<th>Begin service</th>
<th>Service duration</th>
<th>Service complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>11</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>14</td>
<td>1</td>
<td>15</td>
</tr>
</tbody>
</table>

Average queue length: **0.33**