Optimal Sets of Projections of High-Dimensional Data

Dirk J. Lehmann and Holger Theisel

Abstract—Finding good projections of n-dimensional datasets into a 2D visualization domain is one of the most important problems in Information Visualization. Users are interested in getting maximal insight into the data by exploring a minimal number of projections. However, if the number is too small or improper projections are used, then important data patterns might be overlooked. We propose a data-driven approach to find minimal sets of projections that uniquely show certain data patterns. For this we introduce a dissimilarity measure of data projections that discards affine transformations of projections and prevents repetitions of the same data patterns. Based on this, we provide complete data tours of at most $n/2$ projections. Furthermore, we propose optimal paths of projection matrices for an interactive data exploration. We illustrate our technique with a set of state-of-the-art real high-dimensional benchmark datasets.

Index Terms—Multivariate Projections, Star Coordinates, Radial Visualization, High-dimensional Data

1 INTRODUCTION

To a large extent, Information Visualization deals with high-dimensional datasets, i.e., data that can be described as point sets in a high-dimensional space. Finding appropriate projections into 2D (or 3D) is a standard problem in Information Visualization for which a variety of approaches have been proposed. Traditional data projection strategies often provide a complete tour through the space of all data projections, that quadratically or even exponentially grows with the dimensionality n of the data. Due to the large number of projections, such techniques tend to be exhausting for the user, even if n is rather small. Further approaches aim to reduce the number of dimensions, bearing the risk to overlook and lose important data patterns. Beyond that, no approach avoids the repetitive view on similar data patterns.

Finding good data projections is a non-trivial problem due to the following two reasons. Firstly, every projection discards information about the data while introducing distortions. Secondly, the space of all possible projections is large. To evaluate how useful a certain projection is, a variety of quality measures have been proposed. They describe the quality of a particular projection by a certain number.

In this paper, we propose a new approach to find relevant projections. Instead of evaluating the quality of a single projection, we introduce a simple measure of how much more insight is provided by a new projection if a number of other projections are already presented. Our main assumption here is that a new projection does not provide new insight if it can be obtained by a linear combination of optimal affine transformations of the already existing projections. Figure 1 illustrates the concept: the two projections p_1 and p_2 of a high-dimensional point set are considered similar because p_2 can be obtained from p_1 by an affine map. Contrary, if p_1 is given, the new projection p_3 gives new insight because it cannot be obtained by an affine map from p_1. In fact, p_3 shows that the data consists of (at least) two clusters which could not be seen in p_1. Finally, if p_1 and p_3 are given, p_4 still gives additional information about the data because no linear combination of affine transformations of p_1 and p_3 can give p_4.

The discarding of affine transformations for comparing projections is justified in the following observation: one of the most common research questions is to find patterns and clusters in the data. If a projection reveals e.g., two clusters, the same clusters are usually visible in an affine transformation of the projection. Moreover, if two clusters in the high-dimensional data space are projected to the same location in 2D (i.e., they cannot be distinguished in the projection), our approach prefers new projections that distinguish the two clusters. In detail, we make the following contributions:

- We introduce a mathematical formulation for a dissimilarity function of a new projection that encodes how much new insight the projection contributes in relation to a certain number of already present projections. Section 3 introduces the measure.
- Based on this, we apply our mathematical approach to propose a greedy approach to find a low number of projections describing the dataset completely. The main idea is to insert new projections with a maximal distance to the projections being already present. We use this to define short and complete data tours. See Section 4.
- We introduce a mathematical approach to interactively explore the data by smoothly changing the projections in such a way that either maximal new insight is gained by a small change of the projection, or that the result of the projection is kept as constant as possible while changing the projection parameters. See Section 5.

We discuss parameters of the approaches and test them on high-dimensional benchmark datasets in Section 6.

2 RELATED WORK

Related work stems from the area of multivariate projections, data tours, and quality metrics.

Affine and Projective Projections: A family of multivariate embeddings have been introduced as RadViz [12, 19, 8, 7] and Star Coordinates [15, 16]. The approaches define a multivariate projection from nD data space to the 2D visualization space. They introduce additional distortion which lead to confusion during a visual search.

Orthographic Projections: The multivariate Orthographic Star Coordinates [17] generalize the concept of bivariate orthographic projections, such as scatterplots. They prevent distortions by maintaining a set of orthography-preserving constraints. However, the mentioned
multivariate projections do not consider the data itself, even though the inherent structure of data needs to be considered for the selection of a good projection. We introduce a data-driven strategy for choosing a small set of optimal projections. Regarding this, the Prolinektor [20] proposes an interactive exploration technique for a set of basic projections in order to find interesting combinations of them. Our approach does not require an interactive stage to find interesting projections. In addition, the set of projections our approach produces can be utilized as such basic projections, and thus our approach can be well combined with the Prolinektor.

Distance-based Projection Techniques: The Multidimensional scaling (MDS) [27] preserves distances between the data records under projection via the spectrum of a data-dependent centered distance matrix. PCA-based techniques also belong to this family of techniques. With Glimmer [13], a high-performance approach for multilevel MDS on graphic processing units is known. The large amount of distance information required to build up a projection can be reduced by part-linear multidimensional projection (PLMMP) [21] to a small number of pairwise distances between a number of representative data samples, which substantially increase performance of the projection process. Local affine multivariate projection (Lamp) [14] provides a local data projection technique by minimizing the distances of the projected data points with the aid of (interactively) initialized seed or control points in the visualization space. Our approach does not optimize data-based distances to find a good projection. Instead, it optimizes a measure between different projections in order to discard affine transformations. In fact, it could be combined with distance-based projection techniques.

Data Tours: A data tour is given by a set of (relevant) projections being a subset of the projection space, which can be investigated by the user for the purpose of visual data analysis. A time sequence of a set of projections is provided for conducting a visual data exploration. The projection pursuit [11, 6] and the grand tour [3] provide a greedy tour formation of projection via the spectrum of a data-dependent centered distance matrix. Distance-based Projection Techniques:

Data Tours: A data tour is given by a set of (relevant) projections being a subset of the projection space, which can be investigated by the user for the purpose of visual data analysis. A time sequence of a set of projections is provided for conducting a visual data exploration. The projection pursuit [11, 6] and the grand tour [3] provide a greedy tour formation of projection via the spectrum of a data-dependent centered distance matrix. Distance-based Projection Techniques:

Distance of a Record to the Origin in Data Space

\[
0 \leq d(B, A_1, \ldots, A_r) = \frac{1}{m} \min_{Q_i, r} \| E \|_F^2,
\]

Figure 2 illustrates the dissimilarity function for \(n = 3, m = 65, r = 1 \).

Given \(A_1, \ldots, A_r \) and \(B \) (3) is a quadratic minimization problem with the unknowns \(Q_i, r \). To formulate its closed-form solution, we consider the problem in homogenous coordinates:

\[
\text{Data} = \begin{pmatrix} d_1 & \cdots & d_m \end{pmatrix}, A = \begin{pmatrix} A_1 & 0 \\ \vdots & \vdots \\ A_r & 0 \end{pmatrix}, B = \begin{pmatrix} B & 0^T \end{pmatrix}
\]

where \(\text{Data} \) is the homogenous data matrix, \(A \) is a \((2r+1) \times (n+1)\) matrix of all known projection matrices \(A_i \), and \(B \) is the new projection matrix in homogenous coordinates. From this we compute a solution of this minimization problem as

\[
\text{Data} = (B - \bar{D}) A^T (A D A^T)^{-1} \bar{A} \text{Data}
\]

where \(I \) is the \((n+1) \times (n+1)\) unit matrix and \(\Pi' \) is an \((n+1) \times m\) matrix with a vanishing last row. Note that \((A D A^T)^{-1} \) is a symmetric quadratic \((2r+1) \times (2r+1)\) matrix, depending on \(r \). Since \(r < n < m \) usually applies, the calculation of the inverse performs well and is only weakly affected by the curse of dimensionality. Further we get

\[
E = B \Pi
\]

where \(E \) is a \(3 \times m \) matrix with a zero third row. \(E \) is the homogenous version of (2) with optimal \(Q_i, r \), i.e.,

\[
d(B, A_1, \ldots, A_r) = \frac{1}{m} \| E \|_F^2
\]

The proof of (7) is provided in Appendix 1. The behavior of \(d \) under scaling of the projection matrices is given by

\[
d(\beta B, \alpha A_1, \ldots, \alpha A_r) = \beta d(B, A_1, \ldots, A_r)
\]
for any real β and real non-zero α. The α_i have no influence because of the discarding of affine transformations, the linear behavior in β is due to the fact that d essentially adds up Euclidean distances of the projected points.

4 Gradient Ascent for Optimal Projections

Based on the dissimilarity measure for projections, we present an algorithm to find a finite (low) number of projections that represent the high-dimensional data best. The main idea is to find projections that have a large dissimilarity to each other. We propose a greedy algorithm: starting with a projection A_0, we repeatedly find new projections A_1, A_2, \ldots until a new projection does not give new insight into the data. Given A_0, \ldots, A_i, we search for A_{i+1} such that it has maximal dissimilarity to A_0, \ldots, A_i. For this, we apply a gradient ascent of d:

$$ B_0 = A_i \quad \text{(9)} $$

$$ B_{i+1} = \text{orth}(B_i + \lambda \nabla_B d(B, A_1, \ldots, A_i)) $$

and stop if $\|B_{i+1} - B_i\|_F^2 < \rho$. The convergence parameter ρ, as a numerical parameter, steers the smallest dissimilarity that has to be reached to stop the algorithm. It influences the performance of the ascent and the final number of projections. See Sec. 6.4 for details. Then $A_{i+1} = B_{i+1}$. The whole algorithm stops if A_0, \ldots, A_i are complete, i.e., for any new projection B we have $d(B, A_0, \ldots, A_i) = 0$. In (9), the function $\text{orth}()$ computes a matrix $\text{orth}(A)$, by applying a Gram-Schmidt orthonormalization to the row vectors of A, which ensures an orthogonal projection of the data to the visualization space [17]. Due to the scaling behavior of d described in (8), it is required to restrict the length of row vectors in B_{i+1} to one, which is done by this orthonormalization. (6), (7) give that gradient $\nabla_B d$ of d in the variables B can be computed as

$$ \nabla_B d(B, A_1, \ldots, A_i) = \frac{2}{m} \cdot B \cdot \Pi \cdot \Pi^T $$

being a $3 \times (n+1)$ matrix where both the last row and the last column are zero.

Our algorithm has the following parameters: the start projection A_0, the step size λ for the gradient ascent, and the convergence parameter ρ. While choosing $\lambda = 1$, the other parameters are discussed in Section 6.4 and 6.5.

5 Interaction Concepts

We describe an approach for an interactive analysis of a dataset by smoothly changing the projection matrix A. This means that we consider a time-varying projection matrix $A(t)$ where we use our dissimilarity measure to compute its path from an initial projection $A(0)$ and some user input. For this, we propose two strategies: maximal deformation or minimal deformation of the projection. For maximal deformation, the path should consist of a sequence of projections that are maximally distant to their neighbors. In other words: for maximal deformation, the projection $A(t) \cdot \text{Data}$ should have maximal changes under minimal changes of $A(t)$. Contrary, for minimal deformation, the projection $A(t) \cdot \text{Data}$ should have minimal changes under maximal changes of $A(t)$. This strategy aims to provide information on which coordinate axes are dependent on each other. For both strategies, we apply an Euler integration of $A(t)$:

$$ A(t_{i+1}) = A(t_i) + (t_{i+1} - t_i) \dot{A}(t_i) \quad \text{(11)} $$

where the time derivative \dot{A} of A is unknown. For the strategy of maximal deformation, $\dot{A}(t_i)$ is chosen to maximize $d(A(t_{i+1}), A(t_i))$ for $(t_{i+1} - t_i) = 0$. This is an eigenproblem: setting $\tau = 1$, we consider the eigenvector \bar{e}_{n+1} corresponding to the largest eigenvalue of $\Pi \cdot \Pi^T$. Note that \bar{e}_{n+1} forms both the first and second optimal row of the projection matrix A. Since \bar{e}_{n+1} is an eigenvector, its length is undefined, gives us two degrees of freedom α, β for scaling \bar{e}_{n+1} in each row of A. This gives:

$$ \bar{X} = (\alpha \bar{e}_{n+1} \cdot \beta \bar{e}_{n+1} \cdot \bar{a}_{n+1})^T \quad \text{(12)} $$

where \bar{a}_{n+1} is the $(n+1)$-dimensional zero vector. Then α, β are subject of user interaction: the user can draw the 2D path of the projection of a coordinate axis $x_i(t)$ of $A(t)$ from which we get is tangent $x_i(t)$. This gives the parameters α, β by $x_i = (\bar{e}_{n+1}), i(\alpha \beta)$ where $(\bar{e}_{n+1}), i$ is the i^{th} component of \bar{e}_{n+1}.

For the strategy of minimal deformation, we consider the third-smallest eigenvector \bar{e}_3 of $\Pi \cdot \Pi^T$. Note that $\Pi \cdot \Pi^T$ has at least two non-vanishing eigenvalues, reflecting the discarding of the affine transformations of the projections. Then we get

$$ \bar{X} = (\alpha \bar{e}_3, \beta \bar{e}_3, \bar{a}_3)^T $$

with a similar treatment of α, β as above.

6 Experiments

As proof of concept, we present a set of approach-related experiments. Our experiments run on a mobile workstation with a 2.4 GHz 64 Bit Intel CPU with 8 cores, 12 GB RAM, and WIN 7 OS in single-core and single-thread mode.

We introduce the used benchmark data in Sec. 6.1, we illustrate the interaction tool in Sec. 6.2 and the optimal set of projections in Sec. 6.3, which are compared with the commonly used PCA-based approach for visual data exploration. In Sec. 6.4, we investigate the stability of the gradient ascent regarding the influence of convergence parameter ρ and, in Sec. 6.5, regarding the initial projection A_0 (cf. Sec. 4).

6.1 The High-Dimensional Test Datasets

Five high-dimensional test datasets are used from the UCI data base [4]: Iris [9], Yeast [18], Wine [10], Wdbc [25], and Cars [4]. Table 1 points the data characteristics.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Dimensions</th>
<th>Records</th>
<th>Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris</td>
<td>5</td>
<td>150</td>
<td>3</td>
</tr>
<tr>
<td>Yeast</td>
<td>10</td>
<td>1484</td>
<td>10</td>
</tr>
<tr>
<td>Wine</td>
<td>14</td>
<td>178</td>
<td>3</td>
</tr>
<tr>
<td>Wdbc</td>
<td>32</td>
<td>569</td>
<td>2</td>
</tr>
<tr>
<td>Cars</td>
<td>33</td>
<td>7755</td>
<td>52</td>
</tr>
</tbody>
</table>

Table 1. Characteristics of the benchmark test datasets.

In detail, the Fisher’s Iris plants data base consist of 5 dimensions with 150 records. It gives measurements of the sepal as well as the petal length and width for three iris species. An amount of protein localization sites is given in the Yeast dataset, with 10 dimensions and 1484 records. It is usually used to develop probabilistic classifications systems in order to predict properties of proteins. The Wine data consist of 14 dimensions with 178 records. It stems from a chemical analysis of three cultivars of wine which have grown in the same Italian region. Thus, wine-specific characteristics are summarized, such as the level of alcohol, the amount of phenols, or the color intensity. The Wisconsin Diagnostic Breast Cancer aaka Wdbc consists of 569 records with 32 quantitative dimensions each. It contains a set of attributes of cell nucleus measurements that are obtained from breast cancer patients. It turned out that a linear separation by a 2D classifier based on the attributes area, texture, and smoothness allows to diagnose benign and malignant cancer cells. The Cars data base contains 33 dimensions and 7755 records. A broad parameter set for different car models is provided, which encompasses attributes, such as the number of cylinders, the maximum velocity, or the power of a car.

Note that a potential a priori classification within the data is not within the focus of our approach or even required. Thus such cases are treated as usual dimensions. Furthermore, to guarantee a fair comparison between outcomes, to avoid numerical influence, and to reduce scaling effects, we linearly normalized the data within the interval $[0, 1]$. Since affine transformations are removed, the normalization does not negatively affect the quality of the optimal set of projections.
6.2 Path-based Interaction

We present the interaction concept of Sec. 5. Figure 3 presents a representative coordinate axis interaction for the Wine (Fig. 3 (top)) and Yeast dataset (Fig. 3 (bottom)): A coordinate axis is moved along a (green colored) path to yield time-varying projections \(A(t) \), shown by Figure 3 (middle). We present the projections \(A(t) \) for both the minimal deformation (Figure 3 (left)) and maximal deformation case (Figure 3 (right)). It can be seen that the maximal deformation projections are different to each other, reflecting the maximization of the dissimilarity measure during the interaction. In contrast to that, the minimal deformation projections produce similarly shaped outcomes and are similar to the initial projection.

![Minimal Deformation](image1)
![Maximal Deformation](image2)

![Minimal Deformation](image3)
![Maximal Deformation](image4)

Fig. 3. Minimal (left) and maximal (right) deformation of data patterns during identical interaction in the Wine (top) and Yeast (bottom) dataset along an interaction path (green).

To preserve minimal or cause maximal dissimilarity between projections might lead to fluctuations of eigenvectors (cf. Sec. 5), even though the function of eigenvalues itself is smooth over the interaction. This effect is caused by data characteristics and might lead to jitter of \(A(t) \). Thus, it provides additional structural data insight. In the following, we construct optimal sets of projections of the test data.

6.3 Optimal Set of Projections for Test Data

The gradient ascent of Sec. 4 is applied to the test data. For this, the question of an appropriate initial projection arises: An established initial configuration \(A^0 \) of a multivariate projection is the radial layout [17, 15], given by

\[
A^0 = \begin{pmatrix} x_0, \ldots, x_{n-1} \\ y_0, \ldots, y_{n-1} \end{pmatrix}^T = b \cdot (\sin(i \cdot \alpha), \cos(i \cdot \alpha))^T
\]

and \(i = 0, \ldots, n-1 \) whereas \(\alpha = \frac{2\pi}{n} \) and \(b = \sqrt{\frac{2}{n}} \). Following [17], a construction scheme of an orthonormalization (cf. Sec. 4) is given by using a radius \(b = \sqrt{\frac{2}{n}} \), meaning that \(A^0 \) becomes an orthonormal projection. It is an appropriate candidate for the initial projection \(A_0 \) of our gradient descent. Thus, our approach defines \(A_0 = A^0 \) as the initial projection for the gradient ascent with the convergence parameter \(\rho = 0.1 \).

The Figures 4 and 5 illustrate the optimal set of projections produced by our approach (top) in comparison to the same number of best PCA-based projections (bottom), w.r.t. our benchmark datasets (cf. Sec 6.1). PCA is given by the eigenvectors \(e_i \), \(i = 1, \ldots, n \) of the data’s covariance matrix, which minimizes correlation and maximizes variance. Pairwise eigenvectors define a \(2 \times n \) projection \(A_{ij} = e_i e_j^T \). Note that the complete number of PCA projections grows quadratically in the dimension number \(n \), while the number of our set of optimal projections grows linear in \(n \). For instance, the Wine dataset with \(n = 14 \) dimensions has a total number of 91 PCA-based projections (which can be found in the supplemental material), while our optimal set only requires 7 projections. However, in order to provide a fair comparison that reflects the use of PCA in practice, a subset of the largest pairwise eigenvalues is presented for each case, which has the same number of projections as our optimal set.

For our optimal sets in the figures, the annotated dissimilarity label \(d \) of a projection \(A_i \) describes the dissimilarity to the subset of predecessor projections \(\{A_0, \ldots, A_{i-1}\} \) referring to (7) as \(d(B, A_0, \ldots, A_{i-1}) = d(A_i) \) with \(B = A_i \). Consequently, we treat the PCA projections similarly: the dissimilarity label \(d \) of a PCA projection \(e_i j \) also describes the dissimilarity to the subset of predecessor PCA-based projections. This comparison setup facilitates an empirical comparison of the dissimilarity behavior for both techniques. Keep in mind that a larger dissimilarity means that more data insight is given with a certain projection. Finally, the dissimilarity behavior is summarized by a graph at the end of each projection sequence for each dataset and projection technique.

For our optimal sets, it can be seen that the dissimilarity rapidly decreases with growing index \(i \), i.e., \(d(A_i) > d(A_{i+1}) \) with \(i \geq 1, \ldots, r-1 \). This appears to be plausible, since the degree of freedom to find a projection that cannot be generated as affine transformation gets small if a sufficient number of projections is available. In fact, only the first two, three or occasionally four projections of the optimal projection set show relevant data patterns. Clearly, stopping the ascent in early stages would still lead to projections showing the most important patterns. Beyond that, our experiments illustrate that the number \(r \) of projections is optimal with \(r \leq \frac{r}{2} \).

In comparison to that, each new PCA-based projection only provides little additional insight compared to the first PCA projection \(e_1 j \) for each case: The dissimilarity values are much smaller and almost negligible compared to those of our optimal set of projections. On the other hand, relevant patterns that are shown by the PCA-based projections can also be seen in the set of optimal projections. Thus, our experiments empirically illustrate the advantages of our optimal set of projections compared to PCA.

6.4 Influence of Convergence Parameter

The convergence parameter \(\rho \) influences both the dissimilarity between successively selected projections during the gradient ascent and the algorithm’s performance and convergence behavior. In fact, a too large value of parameter \(\rho \) would cause projections that have a small dissimilarity to each other. Thus, the parameter should be rather small in order to facilitate projections that have a large dissimilarity to each other. Thus, the parameter should be rather small in order to facilitate projections that have a large dissimilarity and thus provide new data insights. On the other hand, relevant patterns that are shown by the PCA-based projections can also be seen in the set of optimal projections. Thus, our experiments empirically illustrate the advantages of our optimal set of projections compared to PCA.

Intra Set Differences: Figure 6 (left) shows column-wise the intra set differences \(d(A_i) \) of the projections \(A_i \), \(i = 1, \ldots, r \) for each value of \(\rho \) and row-wise for the test data. It can be seen that the patterns are comparable and only weakly dependent on \(\rho \). Furthermore, the calculation time grows approximately logarithmically in \(\rho \).

Inter Set Differences: We are interested in a comparison of the projections with the same index \(i \) but different values in \(\rho \): Be \(A_{\rho} = \{A_0, \ldots, A_r\} \) the set of projections w.r.t. \(\rho \), and be \(A_{\rho}(i) = A_i \) a projection of it, then we define the inter set difference \(d(i, \rho_1, \rho_2) = d(A_{\rho_1}(i), A_{\rho_2}(i)) \) as the dissimilarity between projections with the same index in different sets that are based on different values of \(\rho \). Figure 6 (right) shows the inter set differences \(d(i, \rho_1, \rho_2) \) with \(i = 1, \ldots, r \). The differences behave quite stable and they are just weakly dependent on the accuracy of \(\rho \).
Intra vs. Inter Set Differences: Be d_{Intra} the maximal intra set difference and be d_{Inter} the maximal inter set difference, then we get the pairs $(d_{\text{Intra}}, d_{\text{Inter}})$ for Iris as $(12.5, 0)$, for Wine as $(45, 2.3)$, for Wdbc as $(338, 12.5)$, and for Cars as $(2079, 243)$. It follows that the observed inter set differences that are caused by a coarser accuracy of ρ are rather small and negligible compared to the dominant intra set differences. Finally our experiments shows that a convenient choice of convergence parameter is $\rho = 0.1$.

6.5 Influence of Initial Projection

In this section, we investigate the influence of the initial projection A_0. For this, we conduct the gradient ascent with noisy versions of the initial projection $A_0 = A^0$: be R_l a $2 \times n$ matrix with randomly chosen column vectors that have a p2-norm of l each, then a noisy version A_l^0 is given by $A_l^0 = A^0 + R_l$. The larger l the noisier A^0 becomes. We did 100 runs of the ascent for each value $l = 0.2, 0.4, \ldots, 1.2$ and being started with A_l^0.

Fig. 4. Optimal set of projections compared to a subset of projections of the PCA tour for the test data Iris (top) and Wine (bottom): For each successor projection, the dissimilarity d is labeled with respect to the amount of all predecessor projections of the same sequence, which is graphically summarized at the end of each sequence.
Fig. 5. Optimal set of projections compared to a subset of projections of the PCA tour for the test data Wdbc (top) and Cars (bottom): For each successor projection, the dissimilarity d is labeled with respect to the amount of all predecessor projections of the same sequence, which is graphically summarized at the end of each sequence.
Fig. 6. Influence of the convergence parameter ρ for the parametrization corresponding to the resulting optimal set of projections: (left) Intra Set and (right) Inter Set Differences for the test data.

Be $d(A_i, l)$ the dissimilarity to the subset of predecessor projections $\{A_i^0, A_1, \ldots, A_{i-1}\}$ for such a set of projections that results if the ascent starts with A_i^0. We define the inter set dissimilarity $d(A_i, l, 0) = |d(A_i, l) - d(A_i, 0)|$ of projection A_i to the projections with the same index i that result by starting the ascent at A_i^0. For a projection A_i over all runs $j = 1, \ldots, 100$ with the same l, we stored its mean inter set dissimilarity $d_{\text{mean}}(A_i, l) = \frac{1}{100} \sum_{j=1}^{100} d_j(A_i, l, 0)$ as well as the maximum/minimum dissimilarity $d_{\text{max}}(A_i, l, 0)$.

Figure 7 illustrates the results. It can be seen that the mean inter set dissimilarity $d_{\text{mean}}(A_i, l)$ is stable: an unstable behavior could be recognized by an exponential growth in $d_{\text{mean}}(A_i, l)$. However, this is not what we observe. Instead, we observe a converging behavior against similar projections even though the initial projection becomes diffuse. Figure 8 (a) illustrates this ability in detail for randomly chosen runs of the Wine dataset for different l: the first five projections of the optimal set can be seen each. Especially the different projections A_i stably show the main pattern in that data, which is shaped like a rotated version of the letter ‘u’, independent to the start projection A_0.

We are also interested in the behavior if the initial projection is randomly chosen, for instance by a user-based interaction. Regarding this, Figure 8 (b) row-wise illustrates the first five projections of the optimal set with respect to three randomly chosen initial projections A_0 of the Wine data. Interestingly, prominent data patterns, such as the ‘u’ pattern in A_1, are still visited in each case. In fact, our experiments show that relevant data patterns are found independently of the chosen start projection A_0 (please find further examples in the supplemental material).

7 DISCUSSION AND LIMITATIONS

Improvements, advantages, and limitations of our approach will be discussed in this section.

Why discarding affine transformations?: In Information Visualization, depending on the application and the dataset, different goals of a visual analysis are possible. Among them there are universal goals that are relevant to all applications: the segmentation of the data points into meaningful clusters. While there is a large amount of cluster definitions for an automatic clustering, visual clustering [29] has been established as an interesting alternative, i.e., an interactive process where the user manually marks the clusters in appropriate projections. This has the advantage that no prior knowledge about shape or properties of the clusters are necessary. We argue that for a visual clustering, affine transformations of the projections are of less relevance: regions that are clearly visually distinguishable remain distinguishable after an affine transformation. Please note that the human perception system is not rotationally invariant, and thus the setup for the presentation of projections influences the users’ capability to recognize important structures. Nevertheless, it is paramount to have such a set of projections available that mutually bear the most structural information regarding the data, which is the focus of this work. Then, to ask for a well designed presentation in order to show the set of projections to the user is not within this paper’s focus.

Relation to quality metrics: Quality metrics measure the quality of a single projection. In contrast, our approach measures the quality of a projection relative to a number of already present projections. In this sense, our approach is orthogonal to existing quality metrics. In fact, they can be used as starting point of our approach.

Dependence on the starting projection: Our approach is parametrized by a start projection A_0 (cf. Sec. 6.5). Even though the choice of this projection influences the set of optimal projections, the relevant data patterns, or variations, stably remain visible. Hence, the final result regarding a visual search is less dependent on A_0.

Completeness of sets of projections: Given a dataset with rank(D) $= n + 1$, the space of all Star Coordinates under discarding of affine transformations is completely described by $n_b = \binom{n}{2}$ linear independent projections: we can find n_b linear independent projections A_1, \ldots, A_{n_b} with $d(A_j, A_1, \ldots, A_{j-1}, A_{j+1}, \ldots, A_{n_b}) > 0$ for $j = 1, \ldots, n_b$, and $d(B, A_1, \ldots, A_{n_b}) = 0$ for any projection matrix B. The value of $n/2$ intended projections can be explained as follows: the space of all projections is $2n$-dimensional, since a projection matrix A_i consist of $2n$ independent entries. By discarding affine transformations, each
projection matrix A_i loses 4 degrees of freedom. A matrix A_i with all its affine transformations forms a 4-dimensional subspace of the space of all transformation matrices. Hence, $n/2$ projection matrices with its affine transformations are enough to cover the transformation space.

Conclusion:

We provided a novel approach to measure the dissimilarity of multivariate projections disregarding affine transformations. It is based on the idea that a new projection in a tour should have a large dissimilarity to all projections that were already presented, in order to ensure the presentation of new data insights. Based on this measure, a small set of optimal projections is automatically selected by our approach. It makes a projection-based visual search more feasible for a user, since the number of projections is restricted to $n/2$. For the future, we are interested in the investigation of further measures that can be applied to a number of projections. For instance, to automatically detect a number of prominent projections which optimally describe the data.

Appendix 1:

Proof that (4)-(7) is the solution of the minimization problem (3):

Defining $Q_i = \begin{pmatrix} Q_i & r_i \\ 0 & 1 \end{pmatrix}$ for $i = 1, ..., r$, we can write (2) in homogeneous coordinates

$$E = B \cdot D_{\text{Data}} - \frac{1}{r} \sum_{i=1}^{r} Q_i \cdot A_i \cdot D_{\text{Data}}. \tag{14}$$

Note that E in (2) and E in (14) are identical except for an additional zero row in E. Introducing the $3 \times (2r + 1)$ matrix of all unknown affine transformation parameters

$$X = \begin{pmatrix} Q_1 & \cdots & Q_r & r_1 + \cdots + r_r \end{pmatrix}, \tag{15}$$

(14) can be written as

$$E = B \cdot D_{\text{Data}} - \frac{1}{r} X \cdot \bar{A} \cdot D_{\text{Data}}. \tag{16}$$

Then the condition for X to minimize $\|E\|_F^2$ is

$$B \cdot D_{\text{Data}} \cdot (\bar{A} \cdot D_{\text{Data}})^T = \frac{1}{r} X \cdot \bar{A} \cdot D_{\text{Data}} \cdot (\bar{A} \cdot D_{\text{Data}})^T \tag{17}$$

which can be solved to

$$\bar{X} = r \cdot B \cdot \bar{D} \cdot \bar{A}^T \cdot (\bar{A} \cdot \bar{D} \cdot \bar{A}^T)^{-1}. \tag{18}$$

Inserting this into (16) gives (6) with (4) and (5).
Fig. 8. Case study: (a) Influence of noise to the initial radial configuration and the resulting set of optimal projections for the wine data. (b) Random walk for the Wine dataset: the initial projections A_0 are randomly chosen.

References

