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Abstract. Classification of breast tumors solely based on dynamic con-
trast enhanced magnetic resonance data is a challenge in clinical re-
search. In this paper, we analyze how the most suspect region as group
of similarly perfused and spatially connected voxels of a breast tumor
contributes to distinguishing between benign and malignant tumors. We
use three density-based clustering algorithms to partition a tumor in re-
gions and depict the most supect one, as delivered by the most stable
clustering algorithm. We use the properties of this region for each tumor
as input to a classifier. Our preliminary results show that the classifier
separates between benign and malignant tumors, and returns predictive
attributes that are intuitive to the expert.

1 Introduction

Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) allows for
perfusion characterization of breast tumors. DCE-MRI has high sensitivity but
moderate specificity. So, it remains supplemental to conventional X-ray mam-
mography, and is frequently used to confirm the malignancy or benignity of le-
sions [1]. Malignant breast tumors often lead to neo-angiogenesis with increased
tissue permeability and increased number of supporting blood vessels; this is
usually reflected in a rapid contrast agent washin and/or washout. Hence, it
is typical to define a region of interest (ROI) and compute the ROI’s average
relative enhancement (RE) over time - the RE curve - for it. From the early
RE and the curve’s shape, the radiologist assesses the contrast agent washin
and washout. Since a breast tumor is as malignant as its most malignant part,
the RE curve of this ROI is used to determine the tumor’s malignancy. In this
study, we partition a ROI into regions that are homogeneous with respect to the
RE curves of their voxels, and identify region features that contribute to predict
malignancy.

The RE curves of the individual voxels are noisy by nature, so a major
challenge lays in grouping them to homogeneous and spatially contiguous regions.
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GlaBler et al. propose a region merging method to this purpose [3], which is used
in [4] to study the role of tumor heterogeneity in predicting malignancy. Similar
to our work is the study of Chen et al. [2], who perform clustering with fuzzy
c-means and extract the most characteristic RE curve for the separation between
benign and malignant tumors. However, our approach combines the identification
of the most suspect region per tumor with the identification of predictive tumor
characteristics that hold for multiple tumors.

In this paper, we study a set of 68 breast tumors. For each tumor, we ap-
ply multiple density-based clustering algorithms and identify the most suspect
region. We extract the properties of this region and show that these properties
contribute to distinguishing between benign and malignant tumors. To do so,
we perform classification over all tumors, whereby we blend out obvious predic-
tors like tumor size. Our focus relies on clinical research on DCE-MRI tumor
enhancement kinetics. In clinical practice, rather, the combination of different
image modalities (e.g. X-ray and MRI) with patient-specific attributes (e.g. ge-
netic risk factors) is indispensable for a complete diagnosis.

2 Material and Methods

In this section we describe our medical image data containing the breast tumors,
followed by our classification approach based on a tumor’s most suspect region.

2.1 Tumor Data

Our data set comprises 50 patients with 68 breast tumors. 31 tumors proved to be
benign and 37 malignant (confirmation was carried out via histopathologic eval-
uation or by follow up studies after six to nine months). We included only lesions
that have been detected in MRI. The data sets were acquired with a 1.0 T open
MR scanner and exhibit the parameters: in-plane resolution ~ 0.67 x 0.67mm?,
matrix &~ 528 x 528, number of slices &~ 100, slice gap = 1.5mm, number of acqui-
sitions = 5—6 and total acquisition time &~ 400sec. During and immediately after
the bolus injection of contrast agent one precontrast and four to five post-contrast
images were acquired per series. Since DCE-MRI data exhibit motion artifacts
mainly due to thorax expansion through breathing and patient’s movement, mo-
tion correction was carried out with MeVisLab (www.mevislab.de), employing
the elastic registration developed by Rueckert et al. [5]. Next, the relative en-
hancement (RE) of a tumor, i.e. the percent aged signal intensity increase, is
calculated [1] with RE = (SI. — SI)/SI x 100. Here, ST is the pre-contrast and
S1. is the post-contrast signal intensity. Each breast tumor was segmented by
an experienced radiologist. The segmentation comprises only voxels exhibiting
at least 50% RE at the first time step after the early post contrast phase.

2.2 Methods

Our approach consists of two steps: the extraction of the most suspect region for
each tumor and the classification process over all tumors (see Fig. 1).
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Step 1: Extraction of the Most Suspect Region of Each Tumor. We
extract the most suspect region by determining descriptive perfusion parameters,
three-time-point classes and applying density-based clustering.

The RE plotted over time yields RE curves that allow for the extraction
of the descriptive perfusion parameters (see Fig. 2(a)): washin (the steepness
of the ascending curve), washout (the steepness of the descending curve), peak
enhancement (the maximum RE value), integral (the area under the curve) and
time to peak (the time when peak enhancement occurs), which are substitutes
for physiological parameters like tumor perfusion and vessel permeability. Since
peak enhancement and integral strongly correlate, we exclude peak enhancement
from the subsequent analysis.
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Fig. 2. In (a) a RE curve and its descriptive perfusion parameters are depicted. In (b),
the 3TP classes based on RE at t}, t5, and t5 are presented.

The three-time-point (3TP) method presented by Degani et al. [6] allows for
an automatic RE curve classification based on three well chosen time points:
t}, the first point in time before the contrast agent injection, t5, 2min after
t) and t5, 4min after t5. With the 3TP method, a RE change in the interval
+10% in the time between t} and t; will be interpreted as plateau, whereas RE
changes higher than 10% and lower than —10% [6] are classified as increasing
curve and washout curve, respectively. Since our study contains 5-6 time steps
due to different scanning parameters, we assign the third time step to ¢, and the
last time step to t4. The analysis of the initial contrast agent accumulation, i.e.
the RE value at t,, which is classified into slow, normal and fast in combination
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with the three curve shapes yields nine curve types (see Fig. 2(b)). We compare
the results of our clustering algorithms with the 3TP classes.

For the evaluation of the tumor enhancement, voxels with similar RE val-
ues should be grouped into regions. To account for irregular and heterogeneous
tumor parts, we adapted and applied the following density-based clustering algo-
rithms to all data sets of our study: Density-based Spatial Clustering of Applica-
tions with Noise (DBSCAN) [7], Density-Connected Subspace Clustering (SUB-
CLU) [8], and Ordering Points to Identify the Clustering Structure (OPTICS) [9].
The algorithms separate objects into clusters based on estimated density distri-
butions. They yield clusters with arbitrary shapes, which is important for the
underlying medical image data. Objects that do not feature similar objects (i.e.
objects with similar parameters) in a given neighbourhood are marked as out-
liers. That’s a further advantage, since outliers may be caused by a missing
inter-voxel-correspondence over time due to motion artifacts.

Next, we employ each voxel’s perfusion parameters and its relative position in
the data set as observations. We apply DBSCAN, SUBCLU and OPTICS with
the following parameters: the number of minimum points minPts for a cluster
is set to 4, 6, and 8. The e-value that determines the size of the neighbourhood
depends on the clustering. For DBSCAN and each minPts value, ¢ was auto-
matically determined as suggested in [7]. For SUBCLU, € was extracted from the
k-distances graph [7] that maps the distance of an object to its k next neighbours.
Our automatic estimation is depicted in Fig. 3. We apply this approach to all four
perfusion parameter sets and assign € to the mean of the four estimated values.
For OPTICS, we empirically set € to 0.5 and 0.75. With minPts € {4,6,8}, we
get three configurations for DBSCAN and SUBCLU and six configurations for
OPTICS yielding 12 clustering results per data set. Spatially connected clusters
are maintained by a connected component analysis.

Fig. 3. Determination of € based on the k-distances graph €4 k-Distance Graph
for a given minPts value. The graph maps the distance
of an object to its k next neighbours (with k = minPts).
A well suited € can be detected at a position with in-
creased slope. It is automatically determined by choosing 02
the point with the biggest distance perpendicular to a o
line g connecting the first and the last point of the graph. - R

objects

To select the most suspect region, we choose the clustering with the least
outliers. Next, we reject all regions that contain less than three voxels. From the
remaining regions, we choose the biggest region with an average RE curve of 3TP
class 7. If no such region exists, we search for the 3TP class 9, 8, 4,6, 5, 1, 3,2 in
that order. Although this is a user-defined ranking, we establish this empirical
ranking based on definitions of the most malignant tumor enhancement kinetics:
a present washout in combination with a strong contrast washin (see Fig. 2(b)).

Step 2: Data Enrichment and Classifier Learning. In the second part,
we combine the extracted data to learn a classifier ¢ over our 68 breast lesions.
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Data enrichment is carried out by including the following attributes of the
tumor and its most suspect region: tumor size (in mm?), number of tumor vox-
els, percent aged region size, number of region voxels, the similarity measures
Purity (P), Jaccard index (J) and the F1 score (Fy) based on the comparison of
our clustering and the 3TP-based division (we extracted and include values per
tumor, per region and per outlier cluster), the region’s mean perfusion parame-
ters, the number of region voxels of each of the 3TP classes, the most prominent
3TP class (the 3TP class to which the majority of region voxels belong), the
region’s mean RE curve, the RE curve’s 3TP class and the patient’s age.

For our approach, we use the J4.8 classification algorithm of the Waikato
Environment for Knowledge Analysis (Weka) library - a Java software library
that encompasses algorithms for data analysis and predictive modelling [10]. J4.8
is based on the C4. 5 decision tree classification [11]. It performs 10-fold cross
validation and requires at least two instances (two tumors) for each tree leaf.
We worked iteratively, reducing the features under consideration and aiming to
avoid features that are obviously predictive (such as tumor size), so that the
predictive power of other features is highlighted. As a result, we came up with
the classifier ¢ that was learned on 18 of the original ca. 40 features.
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Fig. 4. Learned decision tree: the attributes at the upper part of the tree are the most
important ones.

3 Results

We learned a decision tree (see Fig. 4) that employs eight of the 18 features and
classifies 46 of the 68 lesions correctly. Features closer to the root of the tree are
more important than those at lower levels, because the former help in splitting
a larger set of tumors. We can see that the most important attributes are the
heterogeneity of the tumor, as identified by the clustering algorithm (represented
by Jrumor and Joutier) and the age of the patient. The most prominent 3TP
class, the number of voxels in the 3TP class 9 (#(3TPy)) and 6 (#(3TFs)), the
contrast agent washin (RE(t3)), and washout are also important.
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4 Discussion

We presented a new method that combines within-tumor clustering and tumor
classification to predict tumor malignancy, and we reported on our preliminary
results on a data set with 68 breast tumors. Our first results indicate that the
identification of the most suspect region with clustering and the exploitation of
this region’s features in classification are promising steps in tumor separation.
The low sensitivity of our results must be attributed to the specific tumor type,
for which it is difficult to distinguish between benignity and malignancy. In
the future, we want to deepen and expand our findings in several directions.
We intend to use 5-fold cross-validation and more rigid statistics on the 68-
tumor data set, since it is very small for training. A further challenge arises
from correlated tumors; which come from the same patient. We intend to apply
dedicated methods for such instances within a bigger study in the future.
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